In order from most electronegative to least electronegative, the elements are: selenium, bromine, arsenic, and germanium. Selenium has the highest electronegativity, followed by bromine, which is less electronegative than selenium but more so than arsenic and germanium. Arsenic is less electronegative than bromine, while germanium has the lowest electronegativity among the four.
Among germanium, arsenic, bromine, and selenium, bromine has the highest electronegativity. On the Pauling scale, bromine has an electronegativity of about 2.96, while selenium is around 2.58, arsenic is about 2.18, and germanium is approximately 1.96. This trend is consistent with the general increase in electronegativity across a period and decrease down a group in the periodic table.
Among the elements arsenic (As), selenium (Se), bromine (Br), and germanium (Ge), bromine (Br) has the highest electronegativity. Electronegativity generally increases across a period and decreases down a group in the periodic table. Bromine, being in Group 17 (halogens), is more electronegative than the other elements listed. Selenium (Se) is next, followed by arsenic (As) and germanium (Ge).
Krypton (Kr) is the neutral element with 36 electrons, but there are ions (elements that have lost or gained electrons) that can have 36 electrons as well. This includes arsenic, selenium, bromine, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, and indium.
The elements in period 4 of the periodic table are: potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, krypton.
Calcium, arsenic, and bromine are all chemical elements found on the periodic table. They each have distinct properties and classifications: calcium is an alkaline earth metal, arsenic is a metalloid, and bromine is a halogen. Additionally, they can all form compounds that are significant in various chemical reactions and applications. Moreover, they are all essential in certain contexts, such as calcium for biological functions and arsenic and bromine in industrial processes.
Among germanium, arsenic, bromine, and selenium, bromine has the highest electronegativity. On the Pauling scale, bromine has an electronegativity of about 2.96, while selenium is around 2.58, arsenic is about 2.18, and germanium is approximately 1.96. This trend is consistent with the general increase in electronegativity across a period and decrease down a group in the periodic table.
Among the elements arsenic (As), selenium (Se), bromine (Br), and germanium (Ge), bromine (Br) has the highest electronegativity. Electronegativity generally increases across a period and decreases down a group in the periodic table. Bromine, being in Group 17 (halogens), is more electronegative than the other elements listed. Selenium (Se) is next, followed by arsenic (As) and germanium (Ge).
There is not one but there are two metalloids in Period 4 of the periodic table. They are germanium and arsenic. There is a link below to the Wikipedia post on the metalloids so you can have a look at them.
Se-Cl bonds
The elements in the fourth period of the periodic table include potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, krypton.
Germanium bromide has a polar covalent bond because germanium is less electronegative than bromine. This results in an unequal sharing of electrons between the two atoms, making the molecule polar.
The element with the smallest atomic radius among Ge, Se, Br, and As is Arsenic (As). Atomic size generally decreases across a period from left to right, so the elements in this group progress in order of increasing atomic radius: Germanium (Ge) > Selenium (Se) > Bromine (Br) > Arsenic (As).
Krypton (Kr) is the neutral element with 36 electrons, but there are ions (elements that have lost or gained electrons) that can have 36 electrons as well. This includes arsenic, selenium, bromine, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, and indium.
The elements in period 4 of the periodic table are: potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, krypton.
Chlorine and fluorine are more reactive compared to the elements listed, because they are both in group 17 of the periodic table and have a higher tendency to gain electrons to achieve a stable electron configuration.
No, Selenium has 6 valence electrons while Bromine has 7. You can determine this because on the periodic table, Selenium is in Group VI while Bromine is in group VII.
In 1649, Johann Schröder published two methods for preparing elemental Arsenic. So the answer is Arsenic. Yahoo anwers.com