The second law of thermodynamics states essentially that it is impossible for heat to flow from a cooler body to a hotter one, without the performance of work by an external agency. I'm not sure how this relates to your wording of 'matter and energy'.
You must be referring to the two Laws of Thermodynamics. Stated in terms of energy: 1. The First Law of Thermodynamics is the Law of Conservation of Energy, meaning that energy can not be created or destroyed. 2. However, useful energy is continuously being converted into unusable energy. This is irreversible. This is the Second Law of Thermodynamics.
The first law of thermodynamics states that energy cannot be created or destroyed, only transformed. In the case of a light bulb, electrical energy is converted into light and heat energy. The second law of thermodynamics states that some energy is always lost as heat in any energy conversion process, thus not all the energy from the light bulb is converted into light.
The way that the question is worded it is impossible to be sure exactly what you are looking for, but as a reasonable guess, you are looking for what happens to energy that is not producing useful work. The second law of thermodynamics generally tells us that we can never get 100% efficiency, i.e. we can never convert all the energy we are using into useful work. Some of the energy will just go into increasing the entropy of the universe.
The Second Law of Thermodynamics states that a system with no energy input and no losses will tend towards a zero energy state. This is essentially the entropy of any energy exchange. Thus, you require a constant input of energy to maintain any system.
Second law of thermodynamics used for prove of process reversibility, it provide the concept of system loss capability to perform work. Second law of thermodynamics is an effective tools to debunked pseudo-science in the field of perpetual energy (perpetual magnetic generator) and hoax energy saving scam.
No. What is killing the Universe is the Second Law of Thermodynamics.
The first law of thermodynamics states that the energy of an isolated system is constant.
second law
According to the Second Law of Thermodynamics, once energy is wasted, it is gone forever - useful energy has become unusable energy.According to the Second Law of Thermodynamics, once energy is wasted, it is gone forever - useful energy has become unusable energy.According to the Second Law of Thermodynamics, once energy is wasted, it is gone forever - useful energy has become unusable energy.According to the Second Law of Thermodynamics, once energy is wasted, it is gone forever - useful energy has become unusable energy.
The fact that usable energy is always lost in an energy transfer is due to the second law of thermodynamics. This law states that entropy, or disorder, tends to increase over time in a closed system, leading to the loss of usable energy in the form of heat.
There is no commonly accepted law by that name, as far as I know. Two important laws about energy are the First Law of Thermodynamics and the Second Law of Thermodynamics.
According to the second law of Thermodynamics, the amount of usable energy will continuously decrease.According to the second law of Thermodynamics, the amount of usable energy will continuously decrease.According to the second law of Thermodynamics, the amount of usable energy will continuously decrease.According to the second law of Thermodynamics, the amount of usable energy will continuously decrease.
By the first law of thermodynamics, energy is conserved - i.e. the sum of the useful work and the energy lost to heat will equal the energy you started with. The second law states that you will never get 100% energy efficiency.
The second law of thermodynamics states that a system with no energy input and no energy losses will tend toward dissolution.
True
This statement is based on the second law of thermodynamics, which states that in any energy transformation, some energy is lost as waste heat and cannot be converted back into usable energy. This principle underlies many natural processes and technological systems.
No. You can convert one type of energy to another (with certain limitations - for more information, read about the "Second Law of Thermodynamics"); but you can't create energy out of nothing - or destroy energy for that matter.