answersLogoWhite

0

It means "at right angles".

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is beyond the fourth dimension?

all dimensions are orthogonal so there is no ranking them on distance.


What are orthogonal wave functions?

Math Prelude: Orthogonal wave functions arise as a natural consequence of the mathematical structure of quantum mechanics and the relevant mathematical structure is called a Hilbert Space. Within this infinite dimensional (Hilbert) vector space is a definition of orthogonal that is exactly the same as "perpendicular" and that is the natural generalization of "perpendicular" vectors in ordinary three dimensional space. Within that context, wave functions are orthogonal or perpendicular when the "dot product" is zero. Quantum Answer: With that prelude, we can then say that mathematically, the collection of all quantum states of a quantum system defines a Hilbert Space. Two quantum functions in the space are said to be orthogonal when they are perpendicular and perpendicular means the "dot product" is zero. Physics Answer: The question asked has been answered, but what has not been answered (because it was not was not asked), is why orthogonal wave functions are important. As it turns out, anything that you can observe or measure about the state of a quantum system will be mathematically represented with Hermitian operators. A "pure" state, i.e. one where the same measurement always results in the same answers, is necessarily an eigenstate of a Hermtian operator and any two pure states that give two different results of measurement are necessarily "orthogonal wave functions." Conclusion: Thus, there are infinitely many orthogonal wave functions in the set of all wave functions of a quantum system and that orthogonal property has no physical meaning. When one identifies the subset of quantum states that associated pure quantum states (meaning specifically measured properties) and then two distinguishable measurement outcomes are associated with two different quantum states and those two are orthogonal. But, what was asked was a question of mathematics. Mathematically orthogonal wave functions do not guarantee distinct pure quantum state, but distinct pure quantum states does guarantee mathematically orthogonal wave functions. You can remember that in case someone asks.


Which type of crystalline solid forms when barium chloride BaCl2 solidifies?

Solid barium chloride is obtained as orthogonal crystals (for the anhudrous salt).


What is orthogonal and normalized wave function?

An orthogonal wave function refers to two wave functions that are perpendicular to each other in function space, meaning their inner product is zero. A normalized wave function is a wave function that has been scaled such that the probability density integrates to unity over all space, ensuring that the total probability of finding the particle is 1.


What are the (3) dimensions of a form?

They are the lengths of the form in three mutually perpendicular (orthogonal) directions. Sometimes these are referred to as the length, width and height. But breadth or depth can be used instead of width or height.

Related Questions

What is the definition of orthogonal signal space?

Orthogonal signal space is defined as the set of orthogonal functions, which are complete. In orthogonal vector space any vector can be represented by orthogonal vectors provided they are complete.Thus, in similar manner any signal can be represented by a set of orthogonal functions which are complete.


Can the difference of 2 vectors be orthogonal?

The answer will depend on orthogonal to WHAT!


What is orthogonal planning in ancient Greece?

it is planning of orthogonal planning


When was Orthogonal - novel - created?

Orthogonal - novel - was created in 2011.


What is the orthogonal planning in ancient Greece?

it is planning of orthogonal planning


Self orthogonal trajectories?

a family of curves whose family of orthogonal trajectories is the same as the given family, is called self orthogonal trajectories.


How do you use Orthogonal in a sentence?

Orthogonal is a term referring to something containing right angles. An example sentence would be: That big rectangle is orthogonal.


What has the author Richard Askey written?

Richard Askey has written: 'Three notes on orthogonal polynomials' -- subject(s): Orthogonal polynomials 'Recurrence relations, continued fractions, and orthogonal polynomials' -- subject(s): Continued fractions, Distribution (Probability theory), Orthogonal polynomials 'Orthogonal polynomials and special functions' -- subject(s): Orthogonal polynomials, Special Functions


What is self orthogonal?

Self orthogonal trajectories are a family of curves whose family of orthogonal trajectories is the same as the given family. This is a term that is not very widely used.


Prove that the product of two orthogonal matrices is orthogonal and so is the inverse of an orthogonal matrix What does this mean in terms of rotations?

To prove that the product of two orthogonal matrices ( A ) and ( B ) is orthogonal, we can show that ( (AB)^T(AB) = B^TA^TA = B^T I B = I ), which confirms that ( AB ) is orthogonal. Similarly, the inverse of an orthogonal matrix ( A ) is ( A^{-1} = A^T ), and thus ( (A^{-1})^T A^{-1} = AA^T = I ), proving that ( A^{-1} ) is also orthogonal. In terms of rotations, this means that the combination of two rotations (represented by orthogonal matrices) results in another rotation, and that rotating back (inverting) maintains orthogonality, preserving the geometric properties of rotations in space.


What does the mean of product of two orthogonal matrix is orthogonal in terms of rotation?

The mean of the product of two orthogonal matrices, which represent rotations, is itself an orthogonal matrix. This is because the product of two orthogonal matrices is orthogonal, preserving the property that the rows (or columns) remain orthonormal. When averaging these rotations, the resulting matrix maintains orthogonality, indicating that the averaged transformation still represents a valid rotation in the same vector space. Thus, the mean of the rotations captures a new rotation that is also orthogonal.


What is an orthogonal matrix?

A matrix A is orthogonal if itstranspose is equal to it inverse. So AT is the transpose of A and A-1 is the inverse. We have AT=A-1 So we have : AAT= I, the identity matrix Since it is MUCH easier to find a transpose than an inverse, these matrices are easy to compute with. Furthermore, rotation matrices are orthogonal. The inverse of an orthogonal matrix is also orthogonal which can be easily proved directly from the definition.