The charge-mass ratio of a proton is approximately 9.58 x 10^7 coulombs per kilogram (C/kg). This value is a fundamental property that describes the ratio of the charge of a proton to its mass. It is commonly used in particle physics experiments and calculations.
The proton will have greater acceleration. This is because the proton has a higher charge to mass ratio than the alpha particle. The proton has a +1 charge, as you know, and the alpha particle has a +2 charge because it has 2 protons in it. But the alpha particle also has a pair of neutrons fuesed to those 2 protons, so it has a 2 to 4 charge to mass ratio. The proton, with its 1 to 1 ratio of charge to mass, will have a greater acceleration in the same electric field.
Beta particle
The charge-to-mass ratio of an electron is approximately 1.76 x 10^11 coulombs per kilogram. This value is a fundamental characteristic of electrons and is used in various physics applications, such as in particle accelerators.
The ratio of the specific charge of an electron to that of a positron is 1:1. Both the electron and positron have the same magnitude of charge but opposite in sign, with the electron being negative and the positron being positive.
The question is incorrect. (Either that, or I don't know what "specific charge" means.) The alpha particle has a charge of +2, while the proton is +1 and the electron is -1.If you are talking about charge to mass ratio, however, it is true that the alpha particle has a mass of about 4 amu, while the proton is 1 amu, and the electron is 1/1836 amu. This makes the charge to mass ratio of the alpha particle to only be about 0.25, while the proton is 1.0 and the electron is -1836.
Compared to the (charge/mass) ratio of the electron:-- The (charge/mass) ratio of the proton is much smaller; although the proton charge is equal to the electron charge, the proton mass is much larger, by a factor of more than 1,800.-- The (charge/mass) ratio of the neutron is zero, because the neutron charge is zero.
The specific charge of an electron is 1.759 x 10^11 C/kg, while the specific charge of a proton is 9.58 x 10^7 C/kg. Therefore, the ratio of specific charge of an electron to that of a proton is approximately 1.8 x 10^3.
The charge-mass ratio of a proton is approximately 9.58 x 10^7 coulombs per kilogram (C/kg). This value is a fundamental property that describes the ratio of the charge of a proton to its mass. It is commonly used in particle physics experiments and calculations.
The charge and mass ratio of proton is constant, the positive particles found during discharge tube experiment are nuclei of atoms which have different charge and mass ratio.
proton there is no such thing as an electrical charged nut there is such a thing as a charged particle, that is also known as neutron
Because proton and nelutron present in nucleus with charges positive and negative while neutron have no charge and proton and electron have same in numbers and the ratio have between electron and is zero. For.eg magnesium have 12 atomic number and proton and are also 12 in magnesium there ratio is 1:1
The proton will have greater acceleration. This is because the proton has a higher charge to mass ratio than the alpha particle. The proton has a +1 charge, as you know, and the alpha particle has a +2 charge because it has 2 protons in it. But the alpha particle also has a pair of neutrons fuesed to those 2 protons, so it has a 2 to 4 charge to mass ratio. The proton, with its 1 to 1 ratio of charge to mass, will have a greater acceleration in the same electric field.
Beta particle
Charge ratio in an electrostatic precipitator is the ratio of the amount of charge supplied to the amount of dust particles present in the gas stream. This parameter is important as it determines the efficiency of particle collection in the electrostatic precipitator. A higher charge ratio typically results in better particle collection efficiency.
The charge-to-mass ratio of an electron is approximately 1.76 x 10^11 coulombs per kilogram. This value is a fundamental characteristic of electrons and is used in various physics applications, such as in particle accelerators.
The ratio of the radii of their circular paths is 1:1836, which corresponds to the ratio of the masses of a proton to an electron. This is because the centripetal force required to keep a charged particle moving in a circle in a magnetic field is proportional to the particle's mass.