A stable nuclide is not radioactive and don't disintegrate.
Stable. The highest binding energy is for iron and nickel, which are the least likely to undergo fission or fusion reactions
Francium has an atomic covalent radius of 260 pm, is radioactive and very unstable.
The uranium nucleus has over 200 MeV more mass than the sum of the masses of the fission product nuclei plus the free neutrons emitted. Most of this energy appears as the kinetic energy of those particles and manifests as heat energy. Enough heat energy to cause the air around a bomb to radiate x-rays.
Yes, the proton is a nucleon. The term nucleon is used to speak of component particles of the nucleus of an atom. That means either a proton or a neutron. The term nucleon can be applied to either the proton or neutron when speaking of these particles as building blocks of atomic nuclei. Use the link to the related question below for more information.
Helium-4, because it has a higher binding energy per nucleon compared to the initial nuclei involved in the fusion reaction. This means that the products of the fusion reaction have a higher binding energy per nucleon and are more stable, resulting in the release of energy.
The binding energy per nucleon graph shows that the higher the binding energy per nucleon, the more stable the nucleus is. In nuclear reactions, energy is released when the reactants form products with higher binding energy per nucleon, indicating a more stable configuration.
The binding energy per nucleon is a measure of how tightly a nucleus is held together. Nuclei with higher binding energy per nucleon are more stable as they require more energy to break apart. Therefore, nuclei with a higher binding energy per nucleon are more stable and tend to resist undergoing nuclear reactions.
The binding energy per nucleon is a measure of the stability of a nucleus. A higher binding energy per nucleon indicates a more stable nucleus because it requires more energy to break apart the nucleus into individual nucleons. Nuclei with higher binding energy per nucleon are more likely to be stable against radioactive decay.
Iron has the highest binding energy per nucleon among all the elements. This is because iron's nucleus is the most stable in terms of binding energy per nucleon, making it the peak of the curve on the binding energy curve.
For helium the binding energy per nucleon is 28.3/4 = 7.1 MeV. The helium nucleus has a high binding energy per nucleon and is more stable than some of the other nuclei close to it in the periodic table.
Stable. The highest binding energy is for iron and nickel, which are the least likely to undergo fission or fusion reactions
nucleon
The binding energy per nucleon varies with mass number because it represents the average energy required to separate a nucleus into its individual nucleons. For lighter nuclei, the binding energy per nucleon increases as the nucleus becomes more stable. As nuclei become larger (higher mass number), the binding energy per nucleon decreases due to the diminishing strength of the nuclear force relative to the electrostatic repulsion between protons.
A nucleon has more mass when it is not bound to the nucleus of an atom. When the nucleon is bound to other nucleons the binding energy that keeps them together comes from the mass of the nucleon. Therefore the mass of a single nucleon will be smaller in an atom than on it's own.
Francium has an atomic covalent radius of 260 pm, is radioactive and very unstable.
A. N. Antonov has written: 'Nucleon correlations in nuclei' -- subject(s): Nuclear structure, Nucleon-nucleon interactions 'Nucleon momentum and density distributions in nuclei' -- subject(s): Angular distribution (Nuclear physics), Angular momentum (Nuclear physics), Nuclear structure
The uranium nucleus has over 200 MeV more mass than the sum of the masses of the fission product nuclei plus the free neutrons emitted. Most of this energy appears as the kinetic energy of those particles and manifests as heat energy. Enough heat energy to cause the air around a bomb to radiate x-rays.