The usual state of oxygen and hydrogen: they are gases at room temperature.
Oxygen gas (O2) does not have an enthalpy of formation because it is an element in its standard state, which has an enthalpy of formation of zero by definition. Ozone (O3), on the other hand, is a compound and has a defined enthalpy of formation because it is formed from its elements in their standard states.
The standard heat of formation of a free element in its standard state is defined as zero. This is because it is the reference point from which the heat of formation of other compounds is determined.
Heat of combustion of a hydrocarbon is based on the reaction: fuel + oxygen --> carbon dioxide + water (unless you have some nitrogen or sulfur in the fuel, in which case it gets a little more complex) The heat of formation of O2 is zero (O2 is the reference state) The heat of formation of CO2 is the same as the heat of combustion for carbon The heat of formation of H2O is the same as the heat of combustion for hydrogen To find the heat of formation of the fuel, you subtract the heat of combustion from the heats of formation - (weighted with the stoichiometric coefficients from the balanced reaction equation).
The enthalpy changes accompanying a change of state (e.g., melting, boiling) involve breaking or forming intermolecular forces, which may require more energy than simply raising the temperature of a substance at that state. This is because changes of state involve a phase transition, which requires additional energy to overcome the intermolecular forces holding the substance together.
Hess's law allows you to calculate the enthalpy change of a reaction by using the enthalpy changes of other reactions. This is particularly useful when direct measurement of the desired reaction is not feasible.
Oxygen gas (O2) does not have an enthalpy of formation because it is an element in its standard state, which has an enthalpy of formation of zero by definition. Ozone (O3), on the other hand, is a compound and has a defined enthalpy of formation because it is formed from its elements in their standard states.
Standard Heat (Enthalpy) of Formation, Hfo, of any compound is the enthalpy change of the reaction by which it is formed from its elements, reactants and products all being in a given standard state.By definition, the standard enthalpy (heat) of formation of an element in its standard state is zero, Hfo = 0.Standard Molar Enthalpy (Heat) of Formation, Hmo, of a compound is the enthalpy change that occurs when one mole of the compound in its standard state is formed from its elements in their standard states.Standard Enthalpy (Heat) of Reaction, Ho, is the difference between the standard enthalpies (heats) of formation of the products and the reactants.Ho(reaction) = the sum of the enthalpy (heat) of formation of products - the sum of the enthalpy (heat) of formation of reactants: Ho(reaction) = Hof(products) - Hof(reactants)To calculate an Enthalpy (Heat) of Reaction:Write the balanced chemical equation for the reaction Remember to include the state (solid, liquid, gas, or aqueous) for each reactant and product.Write the general equation for calculating the enthalpy (heat) of reaction: Ho(reaction) = Hof(products) - Hof(reactants)Substitute the values for the enthalpy (heat) of formation of each product and reactant into the equation. Remember, if there are 2 moles of a reactant or product, you will need to multiply the enthalpy term by 2, if molar enthalpies (heats) of formation are used.Standard Enthalpy (Heat) of FormationExample: Standard Enthalpy (Heat) of Formation of WaterThe standard enthalpy (heat) of formation for liquid water at 298K (25o) is -286 kJ mol-1. This means that 286 kJ of energy is released when liquid water, H2O(l), is produced from its elements, hydrogen and oxygen, in their standard states, ie, H2(g) and O2(g).This reaction is written as:H2(g) + ½O2(g) -----> H2O(l) Hfo = -286 kJ mol-1The standard enthalpy (heat) of formation of water vapour at 298K (25o) is -242 kJ mol-1.This means that 242 kJ of energy is released when gaseous water (water vapour), H2O(g), is produced from its elements, hydrogen and oxygen, in their standard states, ie, H2(g) and O2(g).This reaction is written as:H2(g) + ½O2(g) -----> H2O(g) Hfo = -242 kJ mol-1
delta Hr is the enthalphy change of a reaction delta Hf is the enthalpy of formation where one mole of a substance is formed ( generally in its naturally occurring physical state) delta Hc is the enthalpy of combustion where one mole of a substance in its standard state undergoes combustion delta Hn is the enthalpy of neutralization where one mole of H+ reacts with OH- to form one mole of H2O delta Ha is the enthalpy of atomization where a molecule splits to form its neutral atomic components
As for every pure element, the heat of formation of O is zero. That is because elements are the smallest constituents and are not made up of anything; therefore, no heat is needed to form pure elements from base substances, as there are no base substances to be used to form the pure elements.
Enthalpy can be zero for a pure substance at its standard state, where it is defined as the enthalpy of formation. This typically occurs at a reference temperature and pressure specified for the substance.
The standard enthalpy change of formation of sodium (ΔHf°) is 0 kJ/mol. This means that the enthalpy change when 1 mole of sodium is formed from its elements in their standard state is zero.
[from wikipedia] The standard enthalpy of formation"standard heat of formation" of a compound is the change of enthalpy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 degrees Celsius). Its symbol is ΔHfO.
The enthalpy of formation of a substance is the energy change when a substance is formed from its elements in their standard states. It represents the heat energy released or absorbed during the formation process. A negative value indicates that the reaction is exothermic, while a positive value indicates an endothermic reaction.
The standard state of iron is solid, but it can be melted into a liquid.
The enthalpy of formation of aqueous potassium chloride is approximately -436.1 kJ/mol. This value represents the energy change when 1 mole of potassium chloride is formed in its standard state from its elements in their standard states at 25°C and 1 atm.
The standard heat of formation of a free element in its standard state is defined as zero. This is because it is the reference point from which the heat of formation of other compounds is determined.
the breaking down of elements into atoms. it is the energy required when 1 mole of a substance completely decomposes into its gaseous atoms i.e endothermic reaction, delta H is +ve meaning breaking bonds