A codon is the triplet sequence in the messenger RNA (mRNA) transcript which specifies a corresponding amino acid (or a start or stop command). An anticodon is the corresponding triplet sequence on the transfer RNA (tRNA) which brings in the specifieds amino acid to the ribosome during translation. The anticodon is complementary to the codon, that is, if the codon is AUU, then the anticodon is UAA. No Thymine's in mRNA. It's replaced by Uranine
The answer is "Non-sense" codons
There are a number of organelles that assist in protein synthesis. The main ones are ribosome and the codons which are found in the cytoplasm.
UAA, UAG, and UGA are stop codons that signal the end of protein synthesis. When they are reached on the mRNA, translation stops, and the completed protein is released from the ribosome.
The pattern used in protein synthesis is called the genetic code. It consists of sequences of three nucleotide bases (codons) in mRNA that correspond to specific amino acids. Ribosomes decode these codons to assemble amino acids into a protein according to the instructions carried by the mRNA.
UAA, UGA, and UAG are stop codons found at the end of mRNA sequences. When a ribosome encounters one of these stop codons during translation, it signals the end of protein synthesis and the release of the newly formed protein.
Stop and start codons are crucial in protein synthesis because they signal the beginning and end of protein production. The start codon initiates the process of translation, while stop codons indicate when the protein is complete. Without these codons, the cell would not know when to start or stop making the protein, leading to errors in protein production.
The codons that signal the termination of protein synthesis are known as stop codons. In the genetic code, there are three stop codons: UAG, UAA, and UGA. When a ribosome encounters one of these codons during translation, it signals the end of protein synthesis and the release of the completed protein.
The start codon that initiates protein synthesis is AUG, which codes for the amino acid methionine. The stop codons that terminate protein synthesis are UAA, UAG, and UGA.
Stop and start codons are necessary for the proper functioning of protein synthesis because they signal the beginning and end of protein translation. The start codon initiates the process of protein synthesis, while stop codons signal the termination of translation, ensuring that the protein is made correctly and in the right sequence. Without these codons, the protein synthesis process would not be able to start or stop at the correct points, leading to errors in protein production.
The answer is "Non-sense" codons
In addition to the commonly used start codon AUG, alternative start codons such as GUG and UUG can also initiate protein synthesis.
Start and stop codons are necessary for protein synthesis because they signal the beginning and end of a protein-coding sequence on mRNA. The start codon (AUG) initiates the translation process, while stop codons (UAA, UAG, UGA) signal the termination of protein synthesis. Without these codons, the cell would not be able to accurately read and translate the genetic information into a functional protein.
The three codons UAA (ochre), UAG (amber), and UGA (opal) that do not code for an amino acid but act as signals for the termination of protein synthesis.
UAG
During protein synthesis, codons are read in groups of three by the ribosome. Each codon corresponds to a specific amino acid, which is added to the growing protein chain. This process continues until a stop codon is reached, signaling the end of protein synthesis.
Stop and start codons are necessary for protein synthesis because they signal the beginning and end of protein production. The start codon initiates the process of translating genetic information into a protein, while the stop codon signals the end of protein synthesis, ensuring that the correct protein is made.
The start codon (AUG) signals the beginning of protein synthesis, while stop codons (UAA, UAG, UGA) signal the end. They are crucial for determining where the protein synthesis process starts and stops, ensuring that the correct protein is made and that it is the right length.