Boiling point is a property not a force; but a high boiling point indicate a strong intermolecular force.
Intermolecular attraction
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
Metallic bonding
K2CrO4 Molarity (concentration) = moles of solute/Liters of solution (100 ml = 0.100 Liters ) Find moles K2CrO4 first. 3.50 grams = (1 mole K2CrO4/194.2 grams) = 0.01802 moles K2CrO4 ----------------------------------------------next Molarity = 0.01802 moles K2CrO4/0.100 Liters = 0.180 M K2CrO4 -------------------------
intermolecular force
This is an intermolecular force.
The chemical formula for potassium chromate is K2CrO4.
Gravity!
Boiling point is a property not a force; but a high boiling point indicate a strong intermolecular force.
Intermolecular attraction
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
Intramolecular forces are not intermolecular forces !
The dissociation equation for potassium chromate (K2CrO4) in water is: K2CrO4(s) -> 2K+(aq) + CrO4^2-(aq).
The intermolecular force in BF3 is London dispersion forces. This is because BF3 is a nonpolar molecule, so the only intermolecular force it experiences is the temporary weak attraction between temporary dipoles.
Intermolecular forces shown by the dotted lines not by strong covalent bonds.
Hydrogen bonds