collision between molcules are elastic
The theory that deals with the behavior of particles in the gas phase is called the Kinetic Molecular Theory (KMT). It describes how gas particles move and interact with each other, and helps explain fundamental gas properties such as pressure, temperature, and volume.
The kinetic energy of the particle increases as the speed increases, following the equation ( KE = \frac{1}{2} mv^2 ) where ( KE ) is the kinetic energy, ( m ) is the mass of the particle, and ( v ) is the speed of the particle. The energy of the particle is converted to kinetic energy as its speed increases.
When a particle has kinetic energy (movement), it can overcome the attractive forces between particles and potentially break free from a material. This is common in processes like evaporation, where particles gain enough kinetic energy to break free from the liquid's surface tension and become a gas.
A lighter gas particle can have the same kinetic energy as a heavier particle if it has a greater speed. Kinetic energy is determined by both mass and velocity, so a lighter particle can compensate for its lower mass by moving faster. The average kinetic energy of gas particles at a given temperature is the same, regardless of their individual masses.
The definition of temperature is the average kinetic energy of a molecule/solid/whatever
what is difference between kinetic and potiental
Kinetic Molecular Theory's abbreviation is KMT or sometimes KMTG when it is the abbreviation for Kinetic Molecular Theory of Gas
I just figured this out, so here it is:Average kinetic molecular energy is based on temp(in kelvin).Ek= (3/2)RT ; where R is a constant(.0821), and T is temp in kelvin.Total molecular kinetic energy is:uRMS=[(3RT)/M]^(1/2) R equals 8.314 J/mol; T=kelvin; M=kg/mol
The relationship between the kinetic energy (ke) of a particle and its temperature (T) is described by the formula ke 3/2kt. This formula shows that the kinetic energy of a particle is directly proportional to its temperature, with the constant k representing the Boltzmann constant.
Thermal energy is the total kinetic and potential energy of particles within a substance, reflecting the overall level of molecular activity. Heat is the transfer of thermal energy between substances due to a temperature difference, moving from a higher temperature to a lower temperature. Temperature is a measure of the average kinetic energy of particles in a substance, determining the direction of heat flow between objects.
collision between molcules are elastic
The change in an electron's kinetic energy is the difference between its initial kinetic energy and its final kinetic energy.
Average Kinetic Energy is determined by the temperate of the gas. The higher the temperature, the higher the average kinetic energy of the gas molecules.Total Kinetic Energy is the average kinetic energy multiplied by the mass - the number of gas molecules in the box.- DENNIS LAM
On a molecular scale, thermal energy is the kinetic energy of individual particles. In a liquid, this thermal energy is transferred to nearby atoms by collisions; a high-speed particle in the liquid collides with a lower-speed particle, transferring some kinetic energy from the high-speed particle to the low-speed particle. When this happens with a large number of particles, thermal energy transfer results.
1. Gases 2.Particles in motion 3. 4. Particle Energy Sorry but these are the right ones just have not found number 3.
I researched and all I found for The Kinetic-Molecular Theory was this:KE = 1/2 mv2