Since the d sublevel has 5 "spaces" the answer would be.
There can be a maximum of 5 unpaired electrons in a d subshell until a pair is formed.
The maximum number of unpaired electrons in a 3p subshell is three. Each of the three p orbitals can hold one electron with the same spin before pairing occurs, according to Hund's rule. Thus, if all three orbitals are occupied by single electrons, the total number of unpaired electrons in the 3p subshell is three.
Scandium (Sc) has an atomic number of 21, which means it has 21 electrons. Its electron configuration is [Ar] 3d¹ 4s². In this configuration, there is one unpaired electron in the 3d subshell, as the 4s subshell is fully paired. Therefore, scandium has one unpaired electron.
Stadium (St) is an element with the atomic number 51. It has a ground-state electron configuration of [Kr] 4d¹⁰ 5s² 5p³. In this configuration, the 5p subshell has three electrons, which are unpaired. Therefore, there are three unpaired electrons in stadium.
Radium (Ra) has an atomic number of 88, which means it has 88 electrons. Its electron configuration is [Rn] 7s², indicating that the 7s subshell is fully filled with two electrons, leaving no unpaired electrons. Therefore, radium has zero unpaired electrons in its ground state.
A nickel atom has an atomic number of 28, which means it has 28 electrons. Its electron configuration is [Ar] 3d^8 4s^2. In this configuration, the 3d subshell contains 8 electrons, with 2 of them unpaired. Therefore, a nickel atom has 2 unpaired electrons.
The maximum number of unpaired electrons in the s subshell is 2, in the p subshell is 6, in the d subshell is 10, and in the f subshell is 14. This is based on the maximum number of electrons that can occupy each subshell according to the Aufbau principle and the Pauli exclusion principle.
The maximum number of unpaired electrons in a 3p subshell is three. Each of the three p orbitals can hold one electron with the same spin before pairing occurs, according to Hund's rule. Thus, if all three orbitals are occupied by single electrons, the total number of unpaired electrons in the 3p subshell is three.
A p subshell can contain a maximum of 6 electrons.
The maximum number of electrons in a single d subshell is 10.
The maximum number of electrons that can be present in each shell or subshell is determined by the formula 2n2, where n is the principal quantum number of the shell or subshell.
Scandium (Sc) has an atomic number of 21, which means it has 21 electrons. Its electron configuration is [Ar] 3d¹ 4s². In this configuration, there is one unpaired electron in the 3d subshell, as the 4s subshell is fully paired. Therefore, scandium has one unpaired electron.
Stadium (St) is an element with the atomic number 51. It has a ground-state electron configuration of [Kr] 4d¹⁰ 5s² 5p³. In this configuration, the 5p subshell has three electrons, which are unpaired. Therefore, there are three unpaired electrons in stadium.
Radium (Ra) has an atomic number of 88, which means it has 88 electrons. Its electron configuration is [Rn] 7s², indicating that the 7s subshell is fully filled with two electrons, leaving no unpaired electrons. Therefore, radium has zero unpaired electrons in its ground state.
Hund's Rule
A nickel atom has an atomic number of 28, which means it has 28 electrons. Its electron configuration is [Ar] 3d^8 4s^2. In this configuration, the 3d subshell contains 8 electrons, with 2 of them unpaired. Therefore, a nickel atom has 2 unpaired electrons.
6th energy level can hold 72 electrons. (has s,p,d,f,g, and h subshells)
Paired electrons in one of the subshell become unpaired and are promoted to higher subshell to create more than one valencies.