If you think to Br3O8 the molar mass is 365 g.
To calculate the mass of ethylene oxide needed to react with 10 g of water, you need to determine the molar ratio of water to ethylene oxide in the balanced chemical equation for the reaction. Once you have the molar ratio, you can use it to calculate the mass of ethylene oxide needed. The molar mass of ethylene oxide is 44.05 g/mol.
The chemical formula for lithium oxide is ( \text{Li}2\text{O} ), not ( \text{Li}{20} ). To calculate the molar mass of lithium oxide, you add the molar masses of its components: lithium (Li) has a molar mass of about 6.94 g/mol, and oxygen (O) has a molar mass of about 16.00 g/mol. Thus, the molar mass of ( \text{Li}_2\text{O} ) is ( 2 \times 6.94 , \text{g/mol} + 16.00 , \text{g/mol} = 29.88 , \text{g/mol} ).
Molar mass of Cesium oxide (Cs2O) is 281.81 g/mol
To find the molar mass of Aluminum Oxide (Al2O3), you need to add the molar masses of the individual elements. The molar mass of aluminum (Al) is approximately 27 g/mol, and the molar mass of oxygen (O) is approximately 16 g/mol. Therefore, the molar mass of Al2O3 is (227) + (316) = 102 g/mol.
"The amount of grams in one mole a substance" is themolar mass (the mass of 1 mole) of a substance.The molar mass of Lithium oxide (Li2O) is 29.881 g/molThe molar mass of a compound can be calculated by adding the molar masses of the compound's constituent elements.In this case :molar mass of lithium oxide= 2x(molar mass of lithium)+ (molar mass of oxygen)= 2x(6.941) + 15.999=29.881 g/molNotes:* the molar masses of elements are found in the periodic table. * Notice the subscript "2" in the chemical formula of lithium oxide , Li2O. This subscript indicates that two lithium atoms are involved in each lithium oxide atom.Hence, we multiply the molar mass of of lithium by "2" when calculating lithium oxide's molar mass.
The molar mass of lithium oxide (Li2O) is 29.88 g/mol.
The molar mass of aluminum oxide, Al2O3, is 101.96 g/mole.
The molar mass of an oxide depends on the specific compound you are referring to, as different oxides have different compositions. To calculate the molar mass of an oxide, you would need to add up the atomic masses of all the elements present in the compound according to their stoichiometric ratios.
The molar mass of BeO is 25.01 g mol−1
Lithium has a molar mass of 6.94 g/mol. Oxygen has a molar mass of 16.00 g/mol. Since Lithium Oxide has 2 Lithium atoms, the molar mass is: (6.94 x 2) + 16.00 = 29.88 g/mol.
To calculate the mass of Sn in tin oxide, you need to know the molecular formula of tin oxide. If it is SnO, then the molar mass of Sn is 118.71 g/mol and that of O is 16.00 g/mol. To calculate the mass of Sn, you need to take the molar mass of Sn and divide it by the total molar mass of the compound (SnO) and then multiply by the total mass of the tin oxide product.
To find the molar mass of beryllium oxide (BeO), you will need to determine the individual molar masses of beryllium (Be) and oxygen (O) from the periodic table and then add them together. The molar mass of Be is about 9 g/mol and the molar mass of O is about 16 g/mol. When you add them together, you'll find that the molar mass of BeO is approximately 25 g/mol.
To find the mass of 24.6 formula units of magnesium oxide, we first need to determine the molar mass of magnesium oxide. Magnesium has a molar mass of approximately 24.3 g/mol, and oxygen has a molar mass of approximately 16.0 g/mol. Therefore, the molar mass of magnesium oxide (MgO) is 24.3 + 16.0 = 40.3 g/mol. Next, we multiply the molar mass of MgO by the number of formula units (24.6) to find the total mass: 40.3 g/mol x 24.6 = 992.38 grams. Therefore, the mass of 24.6 formula units of magnesium oxide is approximately 992.38 grams.
The molar mass of Mg O = 40.3044 g/mol
To calculate the mass of ethylene oxide needed to react with 10 g of water, you need to determine the molar ratio of water to ethylene oxide in the balanced chemical equation for the reaction. Once you have the molar ratio, you can use it to calculate the mass of ethylene oxide needed. The molar mass of ethylene oxide is 44.05 g/mol.
108.2/ molar mass of sodium oxide =108.2/62 =1.75 1.75 x 2 (because there are 2 Na's in the fomular of sodium oxide) =3.5 3.5 x the molar mass of sodium =3.5 x 23 =80.3 grams
The molar mass of calcium oxide is 56.077 grams per mole