answersLogoWhite

0

5000 mm = 5 m

Density of water = 1000 kgm-3

Gravitational acceleration = 9.81 ms-2

Pressure at base (nm-2) = height of water column * density of water * gravitational acceleration

Pressure (nm-2) = 5 * 1000 * 9.81

Pressure = 49,050 nm-2 (49.05 kNm-2)

The question is unclear as to whether you require the answer in units of bar or atmospheres so both are provided:

Pressure in bar = 0.4905

Pressure in atmospheres = 0.484

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How much does pressure does a one half inch diameter column of water exert at its base?

The diameter of the water column does not affect the pressure.It is the height of the column that determines the pressure at the base.(and also the barometric pressure and temperature).


What is water pressur?

Are you asking hydrostatic (standing still) or if the water is under pressure such as the pressure at the base of a riser based on the height of the column of water?


What is the pressure exerted at the base of a water riser by a column of water in a riser 95 feet high?

The pressure exerted at the base of a water riser by a column of water is determined by the height of the column above the base. In this case, with a column of water 95 feet high, the pressure at the base would be approximately 41.1 pounds per square inch. This calculation is done using the formula P = ρgh, where P is pressure, ρ is density of water, g is acceleration due to gravity, and h is the height of the column.


How do you calculate water pressure at top if water pressure given at bottom?

Every 2.3077 feet of water in a column increases the water pressure at the bottom of the column by 1 pound per square inch.A 39 foot column of water with a pressure of 120 psi at the base will have a pressure exerted on its top surface of 103.1 psi.39 ft/ 2.3077 ft/1 psi = 16.9 psi ; 120 psi -16.9 psi = 103.1 psievery meter of water in a column increases the pressure at the base of the column by 0.1 kg./ sq. cm (or 1 kilopascal)A 12 meter column of water exerts a pressure at its base of 12 kPa. (or 1.2 kg/sq. cm)


How many psi equals 1 water column?

You need to know how high the water column is to calculate the pressure it exerts at its base! For example, a column of water 1 metre deep would exert a pressure of 9.81 kPa at its base (density x gravity x depth - 1000 * 9.81 * 1). This would be equal to approx 1.42 PSI.


Does the size of the column affect the amount of hydrostatic pressure?

Yes, the height and density of the column do affect the amount of hydrostatic pressure. The pressure exerted at the base of a column of fluid is directly proportional to the height of the column of fluid and the density of the fluid. A taller or denser column will result in a greater hydrostatic pressure at the base.


What is the formula for water column?

The formula for water is H₂O, which indicates that each molecule consists of two hydrogen atoms bonded to one oxygen atom. In the context of a water column, it typically refers to the height of a column of water that exerts a pressure at its base, measured in units like meters or feet. The pressure exerted by a water column can be calculated using the formula ( P = \rho g h ), where ( P ) is pressure, ( \rho ) is the density of the water, ( g ) is the acceleration due to gravity, and ( h ) is the height of the water column.


How much pressure is created at the base of a 10 foot column of water psi.?

10 feet x 0.433 psi/ft = 4.33 psi at the base of the cylinder.


How do you calculate the pressure on the base of a rectangular water tank?

To calculate the pressure at the base of a rectangular water tank, use the formula ( P = \rho g h ), where ( P ) is the pressure, ( \rho ) is the density of the water (approximately 1000 kg/m³), ( g ) is the acceleration due to gravity (about 9.81 m/s²), and ( h ) is the height of the water column above the base in meters. The pressure increases linearly with depth due to the weight of the water above. Ensure that the height measurement is taken from the water surface to the base of the tank for accurate results.


What will the pressure be at the base of a 1 meter high column of water?

Assumptions:Density of water = 1000 kgm-3.Gravitational acceleration = 9.81 ms-2To calculate the pressure head of a 1 m depth of water, it is necessary to find the unit weight:Unit Weight = Density x gravityUnit Weight = 9810 Nm-3To calculate the pressure head at the base of the column of water:Pressure = Unit Weight x DepthPressure = 9810 x 1Pressure = 9810 PaThe resulting pressure is 9.81 kPa.


What is the maximum suction lift of a solid column of water?

I must assume you mean uniterrupted column of water! The maximum suction lift of a column of water is the height of a column of water (inside a vertical pipe for instance) that can be supported by atmospheric pressure i.e. approx 14.69psi or 760mm Mercury. You should be aware that suction does not cause water to lift. Suction produced by various kinds of pump merely removes air from above the column of water and this allows atmospheric pressure to act upon the base of the water column. The water column is therefore pushed upwards by atmospheric pressure from below rather than pulled up by suction from above. The density, vapour pressure and surface tension of water vary slightly with temperature and atmospheric pressure also varies slightly with weather conditions. Thus the measured height of the water column may vary slightly according to the conditions prevailing when making the measurement. A good approximation at room temperature is 33 feet or 10 metres. Dan Hanlon


What would water pressure be from a 5500 gallon cistern 100 feet high?

The water pressure depends ONLY on the height, and the density of the liquid - not on the number of gallons. You basically calculate the weight of a vertical column of that height, and divide by the base area. The column can be of any cross section - for example a square centimeter, a square meter, or a square foot. (For water, the pressure is about 1 bar for every 10 meters.)