explain the properties of non transparent substances like rock, wood etc.,
Light intensity affects voltage because the higher the intensity of light, the more volts are produced. It works exactly the same way in the case of: the lower the light intensity the less volts that are produced.
The relationship between light intensity and carbon dioxide concentration is critical in photosynthesis. Higher light intensity typically increases the rate of photosynthesis, as it provides more energy for the process. However, this effect is often dependent on the availability of carbon dioxide; if CO2 concentration is low, the photosynthetic rate may not increase significantly even with high light levels. Thus, both factors work together to influence plant growth and productivity.
-- Light approaches the boundary between any two media along the normal direction. -- Light approaches the boundary at any angle and the indexes of refraction of both media are equal.
The ray of light bends towards the normal.
Yes, there is a distinction between light reflection and light refraction. Reflection occurs when light bounces off a surface, changing direction but not wavelength. Refraction, on the other hand, happens when light enters a different medium and changes direction and speed, bending as it passes from one medium to another.
The relationship between the intensity and energy of light is that the intensity of light is directly proportional to its energy. This means that as the intensity of light increases, so does its energy.
less light intensity gives a better vision
The relationship between light intensity and photosynthetic rate is that if the intensity of the light is high then the rate of photosynthesis will increase. However the rate of photosynthesis will only increase to an extent after intensity of light reaches a certain point photosynthesis rate will stay still.
The relationship between the angle of incidence and the angle of refraction is described by Snell's Law in optics. Snell's Law states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the speeds of light in the two media the light is traveling through. This relationship governs how light bends when it passes from one medium to another.
The relationship between absorbance intensity of incident radiation and intensity of transmitted radiation is inverse. As absorbance increases, transmitted intensity decreases. This is due to the absorption of light energy by the material, leading to a reduction in the amount of light passing through it.
The relationship between intensity and brightness in light perception is that intensity refers to the amount of light energy emitted or received, while brightness is the subjective perception of how intense the light appears to the human eye. In general, higher intensity light sources are perceived as brighter, but factors like distance and surrounding light levels can also affect brightness perception.
When light passes through a boundary between two different mediums, the angle of incidence (the angle at which the light enters the boundary) is related to the angle of refraction (the angle at which the light bends as it enters the second medium). This relationship is described by Snell's Law, which states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the velocities of light in the two mediums.
The prism angle affects the amount of refraction of light passing through a prism. A larger prism angle results in greater refraction, causing the light to bend more as it passes through the prism. Conversely, a smaller prism angle leads to less refraction and a smaller bending of the light.
The intensity of the incident ray is equal to the sum of the intensity of the reflected ray and the refracted ray, according to the law of conservation of energy. This means that some of the incident light is reflected and some is refracted when transitioning from one medium to another. The specific ratios of reflection and refraction depend on the properties of the materials involved.
The index of refraction affects the reflection properties of a mirror by determining how much light is reflected and how much is transmitted through the mirror. A higher index of refraction results in more light being reflected, while a lower index of refraction allows more light to pass through the mirror.
In reflection the light bounces bach; in refraction the light passes through, but is bent at the interface.
Snell's Law describes the relationship between the angle of incidence and the angle of refraction for light passing through different mediums. It states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant for a given pair of media.