According to prevailing astronomical theory, red dwarfs do not become supernovae, so the best answer to the question is "nonexistant."
The sun is not big enough to supernova. It's not even big enough to nova. The fate of the sun is a Red giant, a white dwarf then a black dwarf. Therefore we don't need to worry about the sun becoming a supernova. We need to worry about the sun expand to the size where it touches Jupiter.
A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".
A type-I supernova occurs when a white dwarf star accumulates mass from a companion star until it reaches a critical threshold, triggering a runaway nuclear fusion reaction. This causes the white dwarf to explode in a bright supernova event.
Our Sun is currently a main sequence star. It is not a supernova, as supernovae are massive explosions that occur at the end of a star's life cycle, and it is not a white dwarf, which is a type of star that has exhausted its nuclear fuel and collapsed to a very dense state.
No, Sirius will not become a supernova. It is a relatively young star compared to those that typically go supernova, and its mass is not sufficient to trigger such an explosive event. Sirius is expected to eventually evolve into a white dwarf.
White Dwarf, Sun, Red Giant, Supernova
Nebule > Star > Red Giant > Red Dwarf > White Dwarf > Supernova > Neutron Star > Black Hole.
nebula then protosar then red dwarf, yellow star or a blue giant then a red giant then a red super giant then eithr a white dwarf or a supernova from the supernova a black hole or a neutron star if it is a white dwarf it turns into a black dwarf then a black holeNebulaBaby starStarGiant or supergiantWhite dwarfBlack dwarf
Nebule > Star > Red Giant > Red Dwarf > White Dwarf > Supernova > Neutron Star > Black Hole.
Not exactly. Red giants become white dwarf stars. It is the red supergiants that can become supernovas.
No, red dwarf stars are not made from supernovae. Red dwarf stars are low mass stars that form from the gravitational collapse of gas and dust in interstellar clouds. Supernovae, on the other hand, occur when massive stars reach the end of their life cycle and explode.
The sun is not big enough to supernova. It's not even big enough to nova. The fate of the sun is a Red giant, a white dwarf then a black dwarf. Therefore we don't need to worry about the sun becoming a supernova. We need to worry about the sun expand to the size where it touches Jupiter.
red giant, plantary nebula, white dwarf,black whole, red supergiant , supernova, neutron star
Nebula- protostar- Main Sequence Main Sequence- Red Giant- planetary nubula- white dwarf- black dwarf Main Sequence- Red Supergiant- supernova explosion- Nuetron star or a black hole
A supernova is a star that has exploded into dust and gas. A white-dwarf is a small, hot, dense star nearing the end of its life, that did not have enough mass to go supernova. So the answer is "none".
White Dwarf.
A type-I supernova occurs when a white dwarf star accumulates mass from a companion star until it reaches a critical threshold, triggering a runaway nuclear fusion reaction. This causes the white dwarf to explode in a bright supernova event.