The total mass energy of 200 grams of carbon can be calculated using Einstein's famous equation E=mc^2. The mass energy is approximately 1.8 x 10^15 Joules.
To find the mass of 4350000 atoms of carbon, first calculate the molar mass of carbon (12.01 g/mol). Then, divide the molar mass by Avogadro's number to find the mass of one carbon atom. Finally, multiply the mass of one carbon atom by 4350000 to find the total mass of 4350000 carbon atoms.
One mole of 12C has a mass of 12.00000 grams (exactly, by definition).One mole of 13C has a mass of 13.00335 grams.One mole of 14C has a mass of 14.00324 grams.One mole of natural carbon - i.e. a sample with the ration of isotopes equal to that in nature - has a mass of 12.0107 grams.
To determine the mass of the sand, you'll need to subtract the mass of the container (14.5 grams) from the total mass of the container with sand in it. For example, if the total mass of the container with sand is 50 grams, then the mass of the sand would be 50 grams - 14.5 grams = 35.5 grams.
To calculate the mass of carbon dioxide in the atmosphere at 350 ppm (parts per million), we need to know the total mass of the atmosphere and the molar mass of carbon dioxide. The molar mass of carbon dioxide is about 44 grams per mole. At 350 ppm, the mass of carbon dioxide in the atmosphere would be around 5.15×10^15 kg.
It is approximately 24.02 grams. Each mole of carbon weights 12.01 grams (one mole= enough particles to make a substance's weight in grams equal to it's atomic weight in amu; same amount of particles for every substance).
11 grams because all is reacted and there is no reactant left over, although if there were only 3 grams of carbon there would have to be 6 grams of oxygen for this to be viable as carbon dioxide is CO2 so the question asked was itself wrong.
To find the mass of 4350000 atoms of carbon, first calculate the molar mass of carbon (12.01 g/mol). Then, divide the molar mass by Avogadro's number to find the mass of one carbon atom. Finally, multiply the mass of one carbon atom by 4350000 to find the total mass of 4350000 carbon atoms.
moles = mass/relative atomic mass 1 = mass/12 mass = 12 x 1 = 12 grams
One mole of 12C has a mass of 12.00000 grams (exactly, by definition).One mole of 13C has a mass of 13.00335 grams.One mole of 14C has a mass of 14.00324 grams.One mole of natural carbon - i.e. a sample with the ration of isotopes equal to that in nature - has a mass of 12.0107 grams.
The mass of carbon in carbon dioxide is 12 grams per mole.
4 Carbon atoms in one molecule of Butane, times 2 because of two molecules, time the weight of one Carbon atom, which is 12 amu's (an amu = atomic mass unit, also known as a Dalton) equals 96 amu's.
Assuming all have equal velocity the greater mass (20000g) will have the greater kinetic energy.
One mole of 12C has a mass of 12.00000 grams (exactly, by definition).One mole of 13C has a mass of 13.00335 grams.One mole of 14C has a mass of 14.00324 grams.One mole of natural carbon - i.e. a sample with the ratio of isotopes equal to that in nature - has a mass of 12.0107 grams.
To determine the mass of the sand, you'll need to subtract the mass of the container (14.5 grams) from the total mass of the container with sand in it. For example, if the total mass of the container with sand is 50 grams, then the mass of the sand would be 50 grams - 14.5 grams = 35.5 grams.
To calculate the mass of carbon dioxide in the atmosphere at 350 ppm (parts per million), we need to know the total mass of the atmosphere and the molar mass of carbon dioxide. The molar mass of carbon dioxide is about 44 grams per mole. At 350 ppm, the mass of carbon dioxide in the atmosphere would be around 5.15×10^15 kg.
The mass of 4,5 moles of carbon is 54,04815 g.
We use the equation: Mass = Number of moles * Molecular or atomic mass Since the number of moles is 1 ("one mole of carbon-12 atoms") and the atomic mass of carbon-12 atoms is 12, hence the mass would be 12 grams. Note that the unit grams (g) is used here, as it is the SI unit for mass measurement. I hope this is useful! :)