4.2V
4.2 V
4.2 V
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
The standard cell notation for a galvanic cell made with magnesium (Mg) and gold (Au) can be represented as: Mg(s) | Mg²⁺(aq) || Au³⁺(aq) | Au(s). In this notation, magnesium is the anode (oxidation occurs) and gold is the cathode (reduction occurs), with the vertical bars separating different phases and the double vertical bar indicating the salt bridge.
The stranded cell notation for a galvanic cell made with magnesium (Mg) and gold (Au) is written as: [ \text{Mg(s)} | \text{Mg}^{2+}(aq) || \text{Au}^{3+}(aq) | \text{Au(s)} ] In this notation, the anode (Mg) is on the left side, while the cathode (Au) is on the right, with a double vertical line (||) representing the salt bridge that separates the two half-cells.
4.2 V
4.2 V
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
4.2 V
the gold electrode
the gold electrode
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
The aluminum metals
The aluminum metals
The standard cell notation for a galvanic cell with aluminum and gold electrodes is represented as: Al(s) | Al³⁺(aq) || Au³⁺(aq) | Au(s). In this notation, the anode (aluminum) is listed on the left, and the cathode (gold) is on the right. The double vertical line (||) indicates the salt bridge or separation between the two half-cells. The state of each component (solid or aqueous) is also noted.
The two furthest apart in the galvanic series - for all practical purposes this is magnesium and Gold