answersLogoWhite

0

Whatever someone will pay for it! /\/\/\

what a jerk, didnt even help you out.

if this is in deed the Delta Match H-Bar Rifle from 1987 should be worth $1,500usd

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

States that is imposible to know both the velocity and the position of a particle at the same time?

The heisenberg uncertainty principle is what you are thinking of. However, the relation you asked about does not exist. Most formalisms claim it as (uncertainty of position)(uncertainty of momentum) >= hbar/2. There is a somewhat more obscure and less useful relation (uncertainty of time)(uncertainty of energy) >= hbar/2. But in this relation the term of uncertainty of time is not so straightforward (but it does have an interesting meaning).


What is a quantum state and what is a quantum fluctuation?

A quantum state is exactly as it sounds. It is the state in which a system is prepared. For example, one could say they have a system of particles and at time, t=(some number), the particles are at position qi (qi is a generalized coordinate) and have a momentum, p=(some number). You then know the state of the system. There are other properties that can be know for a particle. You could create a system of particles with a particular angular momentum or spin, etcetera. - A quantum fluctuation arises from Heisenberg's uncertainty principle which is \delta E times \delta t is greater than or equal to \hbar and it is defined as the temporary change in the amount of energy in a point of space. This temporary change of energy only happens on a small time scale and leads to a break in energy conservation which then leads to the creation of what are called virtual particles.


Why time isn't an operator in quantum mechanics?

Associated with each measurable parameter in a physical system is a quantum mechanical operator. Now although not explicitly a time operator the Hamiltonian operator generates the time evolution of the wavefunction in the form H*(Psi)=i*hbar(d/dt)*(Psi), where Psi is a function of both space and time. Also I don't believe that in the formulation of quantum mechanics (QM) time appears as a parameter, not as a dynamical variable. Also, if time were an operator what would be the eigenvalues and eigenvectors of such an operator? Note:A dynamical time operator has been proposed in relativistic quantum mechanics. A paper I found on the topic is; Zhi-Yong Wang and Cai-Dong Xiong , "Relativistic free-motion time-of-arrival", J. Phys. A: Math. Theor. 40 1987 - 1905(2007)


Why do you normalise a wave function of a particle?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1


Physical significance of green function in quantum mechanics?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1