fusion
The binding energy (Strong Atomic Force) released is much greater when fusion occurs than when fission occurs. As an example, that is why fission bombs typically have yields around 100 to 500 kilotons of equivalent TNT, while fusion bombs typically have yields in the 25 to 50 megaton range. The problem is that fusion requires a lot of energy to initiate - in fact, most fusion bombs use a fission bomb to set them off.
Transmutation is the process by which one element changes into another. This can only be done with a nuclear reaction, but alchemists once believed it might be possible, for example, to transmute lead into gold. They tried many bizarre things, but were never successful. Only nuclear reactions, such as fusion, fission, radioactive decay, etc, can induce a transmutation
Fusion. Fusion requires very high temperature and pressure. So on earth we usea critical mass of weapons grade uranium to start a fission chain reaction whichenables a fusion reaction in hydrogen. Fusion is of course more powerful than fission
Fission is the splitting of the nucleus of a large heavy atom such as uranium into two smaller parts. Fusion is the sticking together of two light nuclei to make a heavier one, as occurs in the stars. Both processes release energy.
There are two: Nuclear Fission and Nuclear Fusion. Fission is when a neutron is fired at an element with a high atomic number (usually Uranium) which then splits, releasing energy and more neutrons. this produces a chain reaction, which continues until all nuclei have been split. Fusion occurs in stars and a few experimental reactors, and happens when two forms of Hydrogen nuclei (Deuterium and Tritium) fuse into an unstable nucleus, which in turn splits again into Helium and a spare neutron. Fission can start at any temperature, but Fusion only when Hydrogen is in a plasma state.
Fusion occurs in the sun.
Fusion occurs in the sun.
The binding energy (Strong Atomic Force) released is much greater when fusion occurs than when fission occurs. As an example, that is why fission bombs typically have yields around 100 to 500 kilotons of equivalent TNT, while fusion bombs typically have yields in the 25 to 50 megaton range. The problem is that fusion requires a lot of energy to initiate - in fact, most fusion bombs use a fission bomb to set them off.
The stars are powered by nuclear fusion, so this is widespread. Nuclear fission is more unusual and probably only occurs in certain planets where there is a lot of uranium.
A nuclear burst can occur as a result of a nuclear explosion, which can be caused by either a fission or fusion reaction. The specific type of burst depends on the design and intent of the nuclear device used.
Cold fusion is a theoretical nuclear reaction that supposedly occurs at room temperature, while nuclear power plants use controlled nuclear fission reactions to generate heat and produce electricity. Cold fusion has not been reliably demonstrated, while nuclear power plants worldwide successfully use fission to generate a significant portion of electricity.
I am not sure if there is an opposite of fission, where an atom is split in half, but if there was an opposite it would probably be nuclear fusion, where two nuclei join together giving off energy. Nuclear fusion occurs in space, and it is how the sun gives off its energy.
Nuclear energy is the source of the energy produced by both fission and fusion. Per Einstein's equation E = mc2 matter may be converted into energy. In fission, the nuclei of heavy atoms like Uranium or Plutonium are split into less heavy elements. Byproducts of fission are nuclear energy and neutrons that may be used to sustain the nuclear fission process as in a reactor or a bomb. In fusion, two nuclei are merged (or fused) to form a heavier element. Often two Hydrogen atoms are fused to form a Helium atom. Fusion is the process that occurs in our sun. Both fission and fusion result in the conversion of a small amount of the matter in the nuclei of the source atom(s) into energy. Therefore, both may be considered nuclear energy.
core
Nuclear fission occurs in fission reactors, a type of nuclear reactor, and in fission bombs, more commonly knows as atomic bombs.
Transmutation is the process by which one element changes into another. This can only be done with a nuclear reaction, but alchemists once believed it might be possible, for example, to transmute lead into gold. They tried many bizarre things, but were never successful. Only nuclear reactions, such as fusion, fission, radioactive decay, etc, can induce a transmutation
Yes - all the millions of other stars in the Universe, where fusion occurs. Also of course fission reactions in all nuclear reactors on earth