To determine the rate constant of a reaction, you need to know the rate equation and the concentrations of the reactants involved. The rate constant (k) can be calculated using the formula: rate = k [A]^m [B]^n, where [A] and [B] are the concentrations of the reactants and m and n are their respective reaction orders. If the rate is 0.2, you'll need the concentrations and reaction orders to find k. Without that information, the rate constant cannot be determined.
The rate constant can be determined from the rate law by rearranging the rate equation to isolate the constant. For a reaction with a rate law of the form ( \text{Rate} = k[A]^m[B]^n ), where ( k ) is the rate constant, ( [A] ) and ( [B] ) are the concentrations of the reactants, and ( m ) and ( n ) are their respective orders, one can measure the reaction rate at known concentrations. By substituting these values into the rate law and solving for ( k ), the rate constant can be calculated. This process often involves experimental data collected under controlled conditions.
We need to know the rate constant and the reactants concentration.
The rate constant is the reaction rate divided by the concentration terms.
The first order rate constant for tritium can be calculated using the formula: k = 0.693/t1/2, where t1/2 is the half-life of tritium. Substituting t1/2 = 12.3 years into the formula, the first order rate constant for tritium is approximately 0.0565 years^-1.
The reaction rate at known reactant concentrations.
The reaction rate at known reactant concentrations.
The rate constant must have units that make the rate equation balanced. For example, if the rate law is rate kA2B, the rate constant k must have units of M-2 s-1. To calculate the rate constant, you can use experimental data and the rate law equation to solve for k.
The rate constant is the reaction rate divided by the concentration terms.
The rate constant in a chemical reaction can be determined by conducting experiments and measuring the reaction rate at different concentrations of reactants. By plotting the data and using the rate equation, the rate constant can be calculated.
The rate constant k in a chemical reaction can be determined by conducting experiments to measure the reaction rate at different concentrations of reactants. By plotting the data and using the rate equation, the rate constant k can be calculated.
The rate constant for a first-order reaction is a constant value that determines how quickly the reaction occurs. It is denoted by the symbol "k" and is specific to each reaction. The rate constant can be calculated by using experimental data from the reaction.
To determine the rate constant from a graph, you can use the slope of the line in a first-order reaction plot. The rate constant is equal to the negative slope of the line, which can be calculated by dividing the change in concentration by the change in time.
Changing at a constant rate equal to acceleration.
According to what I know the answer is slope
a non-stop rate * * * * * No it is not. A non-stop rate can be faster and slower and faster and faster still etc. That is NOT a constant rate, A constant rate means the same amount for any unit of time in the whole time interval. The rate must not change at all from start to finish.
We need to know the rate constant and the reactants concentration.