PSII, PSI, cytocromes, ferrodoxins are the part of ETC. They transport the protons to ATPase to produce ATP.
The electron transport chain connects the two photosystems in the light-dependent reactions of photosynthesis. It shuttles electrons between Photosystem II and Photosystem I, generating ATP and NADPH for the Calvin cycle.
The electron transport chain is a series of protein complexes embedded in the inner mitochondrial membrane. As electrons pass through this chain, energy is released and used to pump protons across the membrane, creating an electrochemical gradient. This gradient is then used by ATP synthase to generate ATP, the main energy source for cellular functions.
Electronic transport chain
The two clusters of photosystems in plants are Photosystem I (PSI) and Photosystem II (PSII). PSII functions first in the photosynthetic electron transport chain, followed by PSI, and they work together to absorb light energy and carry out the reactions of photosynthesis.
ETC---Electron transport chain
The electron transport chain connects the two photosystems in the light-dependent reactions of photosynthesis. It shuttles electrons between Photosystem II and Photosystem I, generating ATP and NADPH for the Calvin cycle.
ATP Synthase is embedded in the inner membrane electron transport chain.
The electron transport chain is a series of protein complexes embedded in the inner mitochondrial membrane. As electrons pass through this chain, energy is released and used to pump protons across the membrane, creating an electrochemical gradient. This gradient is then used by ATP synthase to generate ATP, the main energy source for cellular functions.
False. The electron transport chain connects the two photosystems in the thylakoid membrane, but it does not directly connect photosystem 1 and photosystem 2. Instead, it shuttles electrons between the two photosystems as part of the light-dependent reactions of photosynthesis.
Electron transport chains are located there are many different electron donors and electron acceptors. Reverse electron transport is the most important in prokaryotic electron transport chains.
The components of the electron transport chain are embedded in the inner mitochondrial membrane to facilitate the efficient transfer of electrons and the generation of a proton gradient, which is necessary for ATP production. Being embedded in the membrane allows for the organization of the components in a specific sequence to create a functional chain. It also helps to prevent the loss of protons and electrons to ensure the proper functioning of the electron transport chain.
The molecule that precedes the electron transport chain in both photosystem I and photosystem II is plastoquinone. Plastoquinone accepts electrons from the reaction center chlorophyll in both photosystems and transfers them to the cytochrome b6f complex to ultimately generate ATP.
what is a synonym of the electron transport chain
The electrons that move between photosystems in photosynthesis are energized by sunlight and carried by electron carrier molecules such as plastocyanin and ferredoxin. These high-energy electrons are transferred through a series of redox reactions in the electron transport chain to generate ATP and NADPH for the light-dependent reactions of photosynthesis.
The electron acceptor for humans in the electron transport chain is oxygen.
In prokaryotic cells, the electron transport chain is located in the plasma membrane. Unlike eukaryotic cells, which have mitochondria to house this process, prokaryotes utilize their cell membrane to carry out oxidative phosphorylation and energy production. The components of the electron transport chain are embedded in the membrane, facilitating the transfer of electrons and the generation of a proton gradient.
The electron transport chain is used to make ATP.