Density.
stars through processes such as supernova explosions. These reactions involve the fusion of lighter elements to create heavier ones, including elements like gold, uranium, and plutonium.
The surface temperature of a star is a key property used to determine what elements it can create through nuclear fusion in its core. Different elements require different temperatures to undergo fusion, with heavier elements typically requiring higher temperatures. This temperature determines the rate of nuclear reactions and the types of elements produced in a star.
Lighter elements are composed of fewer protons and neutrons compared to heavier elements. They tend to have fewer total nucleons and lower atomic numbers. Lighter elements are typically found at the beginning of the periodic table, while heavier elements are found towards the end.
Heavier elements in the universe were primarily formed through nuclear fusion processes in stars. During their lifecycles, stars fuse lighter elements, like hydrogen and helium, into heavier elements in their cores. When massive stars exhaust their nuclear fuel, they undergo supernova explosions, which scatter these heavier elements into space, enriching the interstellar medium. Additionally, processes like neutron capture during these explosive events contribute to the creation of even heavier elements.
A supernova is a star that explodes. Stars about the size of our Sun explode when they run out of "fuel". The fuel they have is Hydrogen which they fuse into Helium and thus convert mass into energy (they shine brightly), Then the Helium and some Hydrogen are fused into heavier elements (Lithium etc) making more energy. All elements heavier than Carbon and lighter than Iron are made in the supernova explosion that comes at the end of the star's "life". Heavier stars will make even heavier elements. The Earth is mostly made of these heavier elements. We are all stardust.
Heaviness is a physical property that describes the weight of an object. It is determined by the gravitational force acting on the object. Objects with more mass will generally feel heavier.
stars through processes such as supernova explosions. These reactions involve the fusion of lighter elements to create heavier ones, including elements like gold, uranium, and plutonium.
Heavier elements like carbon, oxygen, and iron were formed in the cores of stars through nuclear fusion processes. When massive stars exhaust their fuel, they go supernova, releasing heavy elements into space. These elements then become part of new stars and planets, including Earth.
Elements heavier than iron are formed in super-nova explosions.
They were formed in supernovae.
The surface temperature of a star is a key property used to determine what elements it can create through nuclear fusion in its core. Different elements require different temperatures to undergo fusion, with heavier elements typically requiring higher temperatures. This temperature determines the rate of nuclear reactions and the types of elements produced in a star.
Lighter elements are composed of fewer protons and neutrons compared to heavier elements. They tend to have fewer total nucleons and lower atomic numbers. Lighter elements are typically found at the beginning of the periodic table, while heavier elements are found towards the end.
This process is known as nuclear fusion. It occurs in stars like the sun when lighter elements such as hydrogen are combined to form heavier elements like helium, releasing a large amount of energy in the process.
Heavier elements in the universe were primarily formed through nuclear fusion processes in stars. During their lifecycles, stars fuse lighter elements, like hydrogen and helium, into heavier elements in their cores. When massive stars exhaust their nuclear fuel, they undergo supernova explosions, which scatter these heavier elements into space, enriching the interstellar medium. Additionally, processes like neutron capture during these explosive events contribute to the creation of even heavier elements.
Almost all solid elements are heavier than air. This is why these elements do not float under normal atmospheric situations.
After using up its hydrogen-1, the star becomes a red giant. It will start fusing helium-4 into heavier elements. It may also fuse heavier elements, to get other elements that are yet heavier.
I think it's our Sun which gets heavier elements from fusion of hydrogen and other light elements.Edit: Our Sun does create helium from hydrogen by fusion, but that's all. The reason it has heavier elements is that these come from the nebula that formed the Sun. The heavier elements are thought to have come from stars that exploded as "supernovas", a long time ago.