The initial concentration of A was 0.05 M.
To make a solution from one concentration to another, you can use the formula: C1V1 = C2V2. Here, C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. By rearranging the formula, you can calculate the volume of stock solution needed to achieve the desired concentration in a given volume.
At low concentration of substrate , rate of enzyme action is directly proportional to conc. of substrate .
initial molarity*initial volume= final molarity*final volume Initial molarity= 1.50M Initial volume= 20.00ml Final Volume=150.0ml Thus final molarity =1.50M*20ml/150ml=0.200M. New molar concentration= final molarity
mixing a specific amount of solute with a specific amount of solvent to achieve the desired concentration. This can be calculated using the formula: C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.
Second order. If the half life of a reaction is halved as the initial concentration of the reactant is doubled, it means that half life is inversely proportional to initial concentration for this reaction. The only half life equation that fits this is the one for a second-order reaction. t(1/2) = 1/[Ao]k As you can see since k remains constant, if you double [Ao], you will cause t(1/2) to be halved.
To determine the equilibrium concentration from the initial concentration in a chemical reaction, one can use the equilibrium constant (K) and the stoichiometry of the reaction. The equilibrium concentration can be calculated by setting up an ICE (Initial, Change, Equilibrium) table and solving for the unknown concentration at equilibrium using the given initial concentration and the equilibrium constant.
To calculate the final concentration after dilution, use the formula: C1V1 C2V2. This formula states that the initial concentration (C1) multiplied by the initial volume (V1) is equal to the final concentration (C2) multiplied by the final volume (V2). Simply plug in the values for the initial concentration, initial volume, and final volume to find the final concentration.
To determine the initial concentration of a substance in a chemical reaction, you can use the formula: initial concentration (final concentration) / (reaction coefficient). This involves knowing the final concentration of the substance and the reaction coefficient from the balanced chemical equation.
The relationship between the initial concentration (c1) and initial volume (v1) in a chemical reaction is that they are inversely proportional. This means that as the initial concentration increases, the initial volume decreases, and vice versa. This relationship is described by the formula c1v1 constant.
To calculate the equilibrium concentration from the initial concentration in a chemical reaction, you can use the equilibrium constant (K) and the stoichiometry of the reaction. The equilibrium concentration can be determined by setting up an ICE (Initial, Change, Equilibrium) table and using the given initial concentrations and the equilibrium constant to solve for the equilibrium concentrations.
The initial concentration affects the conductivity of a solution in a sense that the greater the initial concentration,the greater the conductivity.increase in concentration means presence of more free moving ions in the solution.but this can only occur in the initial concentration because,after the initial concentration,an increase in concentration will mean that there are now more ions present in the solution but the same volume,hence the ions wouldn't be able to move freely an in the initial concentration,hence the conductivity would then decrease since they can't move freely now.
To calculate concentration effectively using the dilution factor, you can multiply the initial concentration by the dilution factor. This will give you the final concentration after dilution. The formula is: Final concentration Initial concentration x Dilution factor.
To find the final concentration of a solution after dilution, you can use the formula: (C_1V_1 = C_2V_2), where (C_1) is the initial concentration, (V_1) is the initial volume, (C_2) is the final concentration, and (V_2) is the final volume. Plug in the values for the initial concentration, volume, and final volume to calculate the final concentration of HCl.
To calculate the concentration after dilution, use the formula: C1V1 C2V2. Where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. Simply plug in the values and solve for the unknown concentration.
To determine the concentration after dilution, use the formula: C1V1 C2V2. C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. Simply plug in the values and solve for C2 to find the concentration after dilution.
The initial rate of a reaction is calculated by measuring the change in concentration of reactants over time at the beginning of the reaction. This is done by dividing the change in concentration by the change in time. The initial rate is typically expressed in units of concentration per unit time.
To determine the initial rate of reaction from a table, you can look at the change in concentration of reactants over time. By calculating the slope of the initial linear portion of the concentration vs. time graph, you can find the initial rate of reaction.