The final value for the enthalpy of reaction for the combustion of ethylene (C2H4) in your given reaction is -1410 kJ. This indicates that the reaction is exothermic, releasing 1410 kJ of energy as products (2 CO2 and 2 H2O) are formed from the reactants (C2H4 and 3 O2). Therefore, the enthalpy change, ΔH, for the complete combustion of ethylene is -1410 kJ.
To reverse a reaction in a Hess's Law problem, you must change the sign of the enthalpy change associated with that reaction. For example, if the original reaction has an enthalpy change of ΔH, the enthalpy change for the reversed reaction would be -ΔH. This means you would use the negative value of the original enthalpy change as the final value for the enthalpy of reaction for the intermediate.
To reverse a reaction in a Hess's Law problem, you must take the negative of the enthalpy change (( \Delta H )) for that reaction. If the original reaction has an enthalpy of ( \Delta H ), then the enthalpy value you would use for the reversed reaction as an intermediate would be (-\Delta H). This ensures that the direction of the reaction is correctly accounted for in the overall calculation.
To reverse a reaction in a Hess's law problem, you need to change the sign of the enthalpy change associated with that reaction. If the original reaction has an enthalpy of reaction ( \Delta H ), the final value for the enthalpy of the reversed reaction would be ( -\Delta H ). This allows you to correctly account for the energy change in the overall pathway when combining reactions.
When you multiply a reaction by a factor, you also multiply the enthalpy change (ΔH) of that reaction by the same factor. Therefore, if you multiply the reaction by 2, you would take the original enthalpy of reaction and multiply it by 2. For example, if the original ΔH is -100 kJ, the final value for the enthalpy of reaction you would use would be -200 kJ.
When enthalpy in a system decreases, the reaction is considered to be exothermic. In an exothermic reaction, heat is released to the surroundings, leading to a decrease in the internal energy of the system. This change in enthalpy is typically indicated by a negative value for the change in enthalpy (ΔH).
If you need to multiply the reaction by 2, you must also multiply the enthalpy change by 2. The final value for the enthalpy of the reaction used for the intermediate reaction would be 2 times the original enthalpy value.
-572k
When you multiply a reaction by a factor, you also multiply the enthalpy change by the same factor. Therefore, if you multiply the reaction by 2, the final value for the enthalpy of reaction for the intermediate reaction will also be multiplied by 2.
Can you please provide me with the specific reaction or context for which you need the enthalpy value?
To reverse a reaction in a Hess's Law problem, you must change the sign of the enthalpy change associated with that reaction. For example, if the original reaction has an enthalpy change of ΔH, the enthalpy change for the reversed reaction would be -ΔH. This means you would use the negative value of the original enthalpy change as the final value for the enthalpy of reaction for the intermediate.
The final value for the enthalpy of the reverse reaction used in a Hess's law problem would simply be the negative of the original value of the enthalpy of the forward reaction. This is because reversing a reaction changes the sign of the enthalpy change.
286 kJ
To reverse a reaction in a Hess's Law problem, you must take the negative of the enthalpy change (( \Delta H )) for that reaction. If the original reaction has an enthalpy of ( \Delta H ), then the enthalpy value you would use for the reversed reaction as an intermediate would be (-\Delta H). This ensures that the direction of the reaction is correctly accounted for in the overall calculation.
It is multiplied by 2 if the intermediate reaction is multiplied by 2
To reverse a reaction in a Hess's law problem, you need to change the sign of the enthalpy change associated with that reaction. If the original reaction has an enthalpy of reaction ( \Delta H ), the final value for the enthalpy of the reversed reaction would be ( -\Delta H ). This allows you to correctly account for the energy change in the overall pathway when combining reactions.
If you need to reverse a reaction and multiply it by 2 in Hess's law, the enthalpy change of the reaction will also change sign and double in magnitude. This is because reversing a reaction changes the sign of the enthalpy change. Multiplying the reaction by a factor also multiplies the enthalpy change by that factor. Therefore, the final value for the enthalpy of the reaction will be twice the original magnitude but with the opposite sign.
When you multiply a reaction by a factor, you also multiply the enthalpy change (ΔH) of that reaction by the same factor. Therefore, if you multiply the reaction by 2, you would take the original enthalpy of reaction and multiply it by 2. For example, if the original ΔH is -100 kJ, the final value for the enthalpy of reaction you would use would be -200 kJ.