answersLogoWhite

0

A spontaneous reaction at 298 K occurs when the change in Gibbs free energy (ΔG) is negative. This means that the reaction can proceed without the input of external energy, often driven by enthalpy (ΔH) and entropy (ΔS) changes according to the relationship ΔG = ΔH - TΔS. If ΔS is positive, it can favor spontaneity even with a positive ΔH, as long as the temperature is sufficiently high. Conversely, a negative ΔH at lower temperatures also promotes spontaneity.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Natural Sciences

How form a spontaneous reaction 298 k?

A reaction will be spontaneous at 298 K if the Gibbs free energy change (ΔG) for the reaction is negative. This means that the reaction will proceed in the forward direction without requiring an external input of energy. The equation ΔG = ΔH - TΔS can be used to determine if a reaction is spontaneous at a given temperature, where ΔH is the change in enthalpy and ΔS is the change in entropy.


Is the reaction spontaneous or non-spontaneous at 298 k?

To determine if a reaction is spontaneous or non-spontaneous at 298 K, we can use the Gibbs free energy equation, ΔG = ΔH - TΔS. If ΔG is negative, the reaction is spontaneous; if ΔG is positive, it is non-spontaneous. The values of ΔH (enthalpy change) and ΔS (entropy change) must be known to evaluate the spontaneity at this temperature. Without specific values for ΔH and ΔS, we cannot definitively conclude the spontaneity.


What statement describes a reaction at 298 K if H 31 kJmol S 0.093 kJ(molK)?

It is not spontaneous.


At which temperature would a reaction with H -220 kJmol and S -0.05 kJ(mol K) be spontaneous?

To determine the temperature at which the reaction is spontaneous, we use the Gibbs free energy equation: ΔG = ΔH - TΔS. A reaction is spontaneous when ΔG < 0. Given ΔH = -220 kJ/mol and ΔS = -0.05 kJ/(mol K), we set up the equation: -220 kJ/mol - T(-0.05 kJ/(mol K)) < 0. Solving for T gives T > 4400 K, meaning the reaction is spontaneous at temperatures above 4400 K.


What temperature would a reaction with H -92 kJmol S -0.199 kJ(molK) be spontaneous?

To determine the temperature at which the reaction becomes spontaneous, we can use the Gibbs free energy equation: ΔG = ΔH - TΔS. A reaction is spontaneous when ΔG < 0. Given ΔH = -92 kJ/mol and ΔS = -0.199 kJ/(mol·K), we set ΔG to 0 and solve for T: 0 = -92 kJ/mol - T(-0.199 kJ/(mol·K)). This simplifies to T = 462.31 K. Thus, the reaction is spontaneous at temperatures above approximately 462 K.

Related Questions

How form a spontaneous reaction 298 k?

A reaction will be spontaneous at 298 K if the Gibbs free energy change (ΔG) for the reaction is negative. This means that the reaction will proceed in the forward direction without requiring an external input of energy. The equation ΔG = ΔH - TΔS can be used to determine if a reaction is spontaneous at a given temperature, where ΔH is the change in enthalpy and ΔS is the change in entropy.


Is the reaction spontaneous or non-spontaneous at 298 k?

To determine if a reaction is spontaneous or non-spontaneous at 298 K, we can use the Gibbs free energy equation, ΔG = ΔH - TΔS. If ΔG is negative, the reaction is spontaneous; if ΔG is positive, it is non-spontaneous. The values of ΔH (enthalpy change) and ΔS (entropy change) must be known to evaluate the spontaneity at this temperature. Without specific values for ΔH and ΔS, we cannot definitively conclude the spontaneity.


What form a spontaneous reaction at 298 K?

A spontaneous reaction at 298 K is one in which the Gibbs free energy change (ΔG) is negative. This means that the reaction is energetically favorable and will proceed in the forward direction without the need for external energy input.


What statement describes a reaction at 298 K if H 31 kJmol S 0.093 kJ(molK)?

It is not spontaneous.


Which statement describes a reaction at 298 K if H 31 kJ mol S 0.093 kJ molK?

It is not spontaneous.


At which temperature would a reaction with H -220 kJmol and S -0.05 kJ(mol K) be spontaneous?

To determine the temperature at which the reaction is spontaneous, we use the Gibbs free energy equation: ΔG = ΔH - TΔS. A reaction is spontaneous when ΔG < 0. Given ΔH = -220 kJ/mol and ΔS = -0.05 kJ/(mol K), we set up the equation: -220 kJ/mol - T(-0.05 kJ/(mol K)) < 0. Solving for T gives T > 4400 K, meaning the reaction is spontaneous at temperatures above 4400 K.


What would form a spontaneous reaction at 298 K?

deltaH=28 kJ/mol, deltaS=0.109 kJ(molK)


Which compound is formed from its elements by an exothermic reaction at 298 K and 101.3 kPa?

Carbon dioxide (CO2) is formed from its elements (carbon and oxygen) by an exothermic reaction at 298 K and 101.3 kPa.


Which direction of the reaction equilibrium is favored at 298 K room temperature use the reaction I2 solid to I2 gas when H 62.4 kJmol and S 0.145 kJmolK?

I2(s) --> I2(g); dH=62.4kJ/mol; dS=0.145kJ/mol. The reaction will favor the product at this temperature. Your entropy is positive and your enthalpy is also positive, so this reaction will not be spontaneous at all temperatures. But at room temperature, which is 298K, it will be spontaneous and proceed left to right. (this is the sublimation of iodine)


At which temperature would a reaction with H -92 kJmol S -0.199 kJ(molK) be spontaneous?

The condition for a reaction to be spontaneous is ΔG < 0, where ΔG = ΔH - TΔS. At the temperature where ΔG becomes negative, the reaction will be spontaneous. You can calculate this temperature using the given values of ΔH and ΔS.


Which equation represents an exothermic reaction at 298 K?

An exothermic reaction is one where heat is released to the surroundings. An example of an exothermic reaction equation at 298 K is: 2H2(g) + O2(g) -> 2H2O(l) + heat


Use the reaction I2s I2 g H 62.4 kJ mol S 0.145 kJ molK for Question 10. Which direction of the reaction is favored at 298 K room temperature?

Toward I2(s) production