Noble gases can approach ideal gas behavior at high temperatures and low pressures. Under these conditions, the intermolecular forces become negligible, and the volume occupied by the gas particles themselves is minimal compared to the total volume of the gas. Additionally, noble gases are monatomic, which reduces the complexity of their interactions, further aligning their behavior with the ideal gas law.
Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.
NH3, as in Ammonia, like all real gases, are not ideal. Ideal gases follow the ideal gas laws, but ammonia does not adhere to a few of them. First of all, the volume of its molecules in a container is not negliggible. Next, NH3 molecules have intermolecular hydrogen bonding, which is a strong intermolecular bond. Thus, the forces of attaction between molecules is not neglible. All real gases have a certain degree of an ideal gas, but no real gas is actually ideal, with H2 being the closest to ideal.
An ideal gas is a theoretical gas composed of a set of randomly-moving, non-interacting point particles. The ideal gas concept is useful because it obeys the ideal gas law. At normal conditions such as standard temperature and pressure, most real gases behave qualitatively like an ideal gas. Many gases such as air, nitrogen, oxygen, hydrogen, noble gases, and some heavier gases like carbon dioxide can be treated like ideal gases within reasonable tolerances.
No, it is a noble gas
Argon is a noble gas
it blows up :)
Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.
Argon is a noble gas that does not form oxides, hence no acidic or base behaviour.
For an ideal gas, there is assumed to be no force of attraction between molecules. This assumption allows for simplification of the gas behavior under certain conditions, such as low pressure and high temperature. In reality, real gases do experience weak forces of attraction between molecules, but these are considered negligible in the ideal gas model.
NH3, as in Ammonia, like all real gases, are not ideal. Ideal gases follow the ideal gas laws, but ammonia does not adhere to a few of them. First of all, the volume of its molecules in a container is not negliggible. Next, NH3 molecules have intermolecular hydrogen bonding, which is a strong intermolecular bond. Thus, the forces of attaction between molecules is not neglible. All real gases have a certain degree of an ideal gas, but no real gas is actually ideal, with H2 being the closest to ideal.
An ideal gas is a theoretical gas composed of a set of randomly-moving, non-interacting point particles. The ideal gas concept is useful because it obeys the ideal gas law. At normal conditions such as standard temperature and pressure, most real gases behave qualitatively like an ideal gas. Many gases such as air, nitrogen, oxygen, hydrogen, noble gases, and some heavier gases like carbon dioxide can be treated like ideal gases within reasonable tolerances.
No, it is a noble gas
Oxygen gas behaves least like an ideal gas at low temperatures and high pressures. At low temperatures, the gas molecules move more slowly and can interact more with each other, deviating from ideal gas behavior. At high pressures, the gas molecules are closer together and experience stronger intermolecular forces, leading to less ideal behavior.
Yes, argon is a noble gas. It is a colorless, odorless, and non-reactive gas that is part of the noble gas group on the periodic table.
no. it is a molecule, not a noble gas
A noble gas is colorless.
Argon is a noble gas