Characteristics of an ideal gas:
- an extremely low concentration
- molecules are in a permanent motion
- Newton laws can be applied
- all collisions are elastic
- molecules are spherical
- molecules are not compressible
There are ideal gases..
An ideal gas
Not true. It applies to real gases that are exhibiting ideal behavior. Any gas that is not 'close' to its boiling and is at a 'low' pressure will behave like an ideal gas and Boyle's Law can be applied. Remember there is no such thing as an ideal gas, so when Boyle did his experiments and came up with his law he was using a real gas, probably just air.
Butane gas is not an ideal gas because it exhibits some deviation from the ideal gas law at high pressures and low temperatures. This is due to the intermolecular forces present in butane molecules that influence their behavior. Additionally, butane gas can liquefy at relatively low temperatures, further deviating from ideal gas behavior.
An ideal gas is assumed to have "point mass" - i.e. each molecule of gas occupies no intrinsic volume, thus the ideal gas is infinitely compressible since the molecules will never overlap as they are compressed like they would in a real gas.
An ideal gas is an abstraction - a simplification. No real gas behaves exactly like an "ideal gas". The reason an ideal gas is used is because (a) the math is simpler, and (b) this is close enough for real gases, in many cases. Thought this is often not stated explicitly, we can safely assume that an "ideal gas" is supposed to remain a gas, regardless of the temperature and pressure.
The Universal Gas Constant is 8.314 J/K/Mole
Any gas- but if you want them to SAFELY float, use helium.
There are ideal gases..
An ideal gas
The Universal Gas Constant is 8.314 J/K/Mole
the ideal gas constant D:
No, the ideal gas equation can be used with any temperature scale (e.g., Kelvin or Fahrenheit) as long as the proper gas constant is used in the calculations. The relationship between temperature scales can easily be accounted for in the ideal gas equation by using the appropriate conversion factors.
Krypton is not an ideal gas because it deviates from the ideal gas law at high pressures and low temperatures due to its intermolecular interactions. At standard conditions, krypton behaves closely to an ideal gas, but as conditions vary, its non-ideal characteristics become more pronounced.
No, oxygen is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
No, CO2 is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
All gas laws are absolutely accurate only for an ideal gas.