When an electron moves from a lower to a higher energy level, it absorbs energy and jumps to a higher orbit. This process is known as excitation. The electron can then release this absorbed energy as light when it moves back down to a lower energy level.
Lots of wrong answers out there, tested this on school, the answer is: Drops from a higher to a lower energy level
When an electron releases a photon, it moves to a lower energy level within the atom. This process is known as an electron transition. The released photon carries the energy difference between the initial and final energy levels of the electron.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
When an electron moves from a lower to a higher energy level, it absorbs energy and jumps to a higher orbit. This process is known as excitation. The electron can then release this absorbed energy as light when it moves back down to a lower energy level.
when heat is provided to an electron it jumps from a lower energy level to a higher energy level.but when heat is not provided it will come back to its own level.
Lots of wrong answers out there, tested this on school, the answer is: Drops from a higher to a lower energy level
When an electron releases a photon, it moves to a lower energy level within the atom. This process is known as an electron transition. The released photon carries the energy difference between the initial and final energy levels of the electron.
Electrons are normally in an energy level called the ground state. In the ground state electrons absorb heat energy and then get into the excited state where they release the energy and exert light energy. The light energy can be seen with a spectroscope with a unique bright line emission spectrum.
When an atom releases energy in the form of visible wavelengths of light, it indicates that an electron in that atom has gone from an excited energy level, back down to a lower energy level.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
First, in order for an electron in an atom to change energy levels, there must be a place for it in the new energy levels. Quantum Mechanics puts very strict rules on how many electrons can be in the same energy level. Assuming there is a place for it, then it is very likely to move into a lower energy level. It is not possible for it to move into a higher energy level unless something from the outside comes in and knocks it up. There is no way to predict when an electron will drop down into a lower energy level. When something like a photon comes in from the outside and knocks the electron into a higher level, it usually drops back down pretty quickly, but not necessarily.
When an electron in an atom absorbs a specific "Quantum" of energy, it will jump to the next specific energy level in the atom. It'll then jump back down, and in so doing releasing light and giving off a signature light spectrum for an element.
The atom must be subjected to a form of energy which propels the electron(s) to a higher energy level. When the electrons return to their resting state they emit one photon of light at a certain wavelength that our eyes interpret as a color.