The masses accelerate, at rates that are inversely proportional to their masses.
You can get a general sense of this effect by pushing on a grape and a school bus
with the same force.
The difference in the masses of the two objects is 0.479 units, which indicates that one object is heavier than the other by this amount. This value does not specify the individual masses but highlights the disparity between them. To understand their actual masses, you would need the mass of at least one of the objects.
Air resistance must be absent for two objects of drastically different masses to fall at the exact same speed when relying only on gravity. This is because air resistance affects the rate at which objects fall through the atmosphere, causing lighter objects to experience more air resistance than heavier objects.
Not necessarily. The density of an object depends on its mass and volume, so two objects made from the same substance could have different densities if they have different masses or volumes.
Galileo's experiment to show that mass had little effect on the speed of falling objects involved two cannonballs of different sizes being dropped from a certain height. This showed that, in a vacuum at least, falling objects fall at the same speed no matter their mass.
Ceratinly. It depends on their densities.
Similar forces will result in different accelerations on objects of different masses. According to Newton's second law, F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. Objects with larger masses will experience smaller accelerations compared to objects with smaller masses when subjected to the same force.
Air masses
In a vacuum with no air resistance, objects of different masses will fall at the same rate and hit the ground at the same time. This is because gravity affects all objects equally regardless of their mass.
In a vacuum, where there is no air resistance, two objects of different masses will fall at the same rate and hit the ground at the same time. This is due to the acceleration of gravity being the same for all objects in a vacuum, regardless of their mass.
Their masses are different. (Mass = density * volume)
Objects with different masses will fall to the ground at the same rate in the absence of air resistance, due to gravity being a constant force regardless of mass. However, objects with different masses will experience different forces due to inertia, momentum, and friction when they reach the ground.
no
Yes, two objects with the same volume can have different masses if they are made of materials with different densities. Density is the mass of an object per unit volume, so objects of the same volume but different densities will have different masses.
Not necessarily. Objects can have different masses or experiences different forces, resulting in different accelerations.
The gravitational force between two objects increases as their masses increase. This is because gravitational force is directly proportional to the product of the masses of the two objects. As the masses increase, the force of attraction between them also increases.
When two objects collide and have different masses, the object with greater mass will generally experience less acceleration and maintain more of its initial velocity. The object with lesser mass will typically experience a greater change in velocity and direction due to the impact. The conservation of momentum and kinetic energy are key principles that govern the outcome of collisions between objects with different masses.
Two objects can have the same volume but different densities if they have different masses. Density is calculated as mass divided by volume, so if the masses of the two objects are different even though their volumes are the same, their densities will also be different.