The temperature and pressure.
because according to kinetic theory number of collisions exert force per unit area(pressure) so when the temperature is constant along with volume then the same number of collisions are taking place per unit time thats why pressure remains constant....
When the number of moles of a gas doubles and all else is constant, then the volume also doubles.
The ideal Gas Law states the following: pV=nRT p=pressure [pa] V=volume [m³] n=number of moles R=constant T=temperature [K] So, if you multiply the number of moles by 2, and all the other variables are not changed, your volume will also be multiplied by 2.
If the number of moles of a gas doubles at constant pressure and temperature, the volume of the gas will also double according to Avogadro's law. This is because the volume of a gas is directly proportional to the number of moles present.
pV = nRT we can firstly assume that n (number of moles) and R (gas constant) do not change and as pressure is also kept constant, the temperature must be proportional to the volume. Thus if temperature is increased from 27C (300K) to 327C (600K) and is doubled, the volume must also double.
The temperature and pressure.
When temperature and number of particles of a gas are constant, the pressure of the gas remains constant as well if the volume is fixed. This is known as Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when temperature and quantity of gas are held constant.
The pressure is now higher.
When the number of moles of a gas doubles and all else is constant, then the volume also doubles.
because according to kinetic theory number of collisions exert force per unit area(pressure) so when the temperature is constant along with volume then the same number of collisions are taking place per unit time thats why pressure remains constant....
When the number of moles of a gas doubles and all else is constant, then the volume also doubles.
When the number of moles of a gas doubles and all else is constant, then the volume also doubles.
the pressure decreases D:
If the number of moles of gas decreases, the volume of the gas will decrease as well, assuming constant temperature and pressure. This is described by Boyle's Law, which states that the volume of a gas is inversely proportional to the number of moles of gas when pressure and temperature are held constant.
The ideal Gas Law states the following: pV=nRT p=pressure [pa] V=volume [m³] n=number of moles R=constant T=temperature [K] So, if you multiply the number of moles by 2, and all the other variables are not changed, your volume will also be multiplied by 2.
If the number of moles of a gas doubles at constant pressure and temperature, the volume of the gas will also double according to Avogadro's law. This is because the volume of a gas is directly proportional to the number of moles present.
pV = nRT we can firstly assume that n (number of moles) and R (gas constant) do not change and as pressure is also kept constant, the temperature must be proportional to the volume. Thus if temperature is increased from 27C (300K) to 327C (600K) and is doubled, the volume must also double.