When there is no current passing through a conductor, charges are stilll in motion, but they are disorganized and not flowing. The magnetic fields by all of those random movements cancel each other out. That is why there is no magnetic field in a conductor with no current, even though there is movement in the charges.
Oesterd discovered that when an electric current flows through a conductor a magnetic field develops around the conductor. So when you switch on the electromagnet a current passes through a solenoid generating a magnetic field which can be controlled by either forming more or less loops or increasing/decreasing the amount of current passing through the solenoid.
Passing a wire near a magnetic field induces an electric current in the wire.
Electromagnetic induction is the process of inducing electric current in a coil with the help of a magnet.Whenever a conductor is moved through a magnetic field, or the magnetic field fluctuates in strength (as with an AC electromagnet), a current will be induced in that conductor. Induction cooktops work by passing a large AC current through a conductor under the cooktop, creating a fluctuating magnetic field which induces an electric current through the cookware - heating the cookware by electrical resistance.The process by which a substance, such as iron or steel, becomes magnetized by a magnetic field. The induced magnetism is produced by the force of the field radiating from the poles of a magnet.CommentFurther to the original answer, it is a voltage that is induced into a conductor, NOT a current.
Magnetism could be produced due to the flow of electrical current. This was first discovered by Oersted. By changing the magnetic flux linked with a coil electric current could be induced. This was first studied by Michael Faraday. Just due to the orbital motion or spin motion of electron magnetism is produced in tiny form and is known as magnetic dipoles. Such dipoles getting oriented in different form lead to form dia, para and ferro magnetic materials.
Your question is not quite crystal clear. However, a magnetic field is produced by a moving electric charge. Ordinarily, a current passing through a conductor will produce a magnetic field. In a fixed magnet, a group of the electrons has been organized so that their spins are aligned and this produces a permanent magnet. The Earth's magnetic field is the net result of a number of individual fields caused by electric currents generated in the hot interior of the mantle.
Increasing the current passing through a conductor results in a stronger magnetic field, not a weaker one. Therefore, increasing the current from 10 A to 15 A should increase the strength of the magnetic field produced by the conductor.
An electric current passing through a conductor generates a magnetic field.
TRUE
A magnetic field is created by moving electric charges, such as electrons. The strength of a magnetic field is affected by the distance from the source, the amount of current flowing, and the material through which the magnetic field is passing. Increasing the current or using materials with higher magnetic permeability will result in a stronger magnetic field.
Voltage is induced in a conductor when there is a change in magnetic field passing through it, according to Faraday's law of electromagnetic induction. This change in magnetic field creates an electromotive force (emf) that drives the flow of electric current in the conductor.
In the electromagnetic induction animation, the movement of electrons is caused by a changing magnetic field passing through a conductor. This changing magnetic field induces a voltage in the conductor, which in turn creates an electric current that causes the electrons to move.
An electrical current can be induced in a wire by a changing magnetic field passing through the conductor. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of generators and transformers. Moving the wire through a magnetic field or changing the magnetic field around the wire can result in the generation of an electrical current.
Oesterd discovered that when an electric current flows through a conductor a magnetic field develops around the conductor. So when you switch on the electromagnet a current passes through a solenoid generating a magnetic field which can be controlled by either forming more or less loops or increasing/decreasing the amount of current passing through the solenoid.
the relationship between the deflection of the wire and the ccurrent is when the voltage is 12volt the current become higher.Another AnswerPresumably you are referring to the force on a conductor placed in a magnetic field? In which case, it is equal to the Flux Density of the field (in teslas), the length of the conductor within the field (in metres), and the value of the current passing through the conductor (in amperes).
Current passing through a wire in a magnetic field creates its own magnetic force in some direction. If you increase the current, force will be increased. If the direction of current is changed, direction of force will also be reversed. Direction of current is found by applying right hand rule.
Electric current involves the flow of electrically charged particles, such as electrons, through a conductor. Magnet current, on the other hand, refers to the flow of magnetic field lines through a material, typically induced by an electric current passing through a wire. Magnet current is associated with the movement of magnetic fields, whereas electric current is associated with the movement of electric charges.
Passing a wire near a magnetic field induces an electric current in the wire.