The nuclear reaction is:
232Th--------------- 228Ra + α
When (^{222}Rn) emits a beta particle, it transforms into (^{222}Fr), which is Francium.
Uranium has a different decay chain/series for its different isotopes. Uranium 238 for example first decays to thorium 234 through alpha decay while U235 alpha decays to thorium 231. Both have different half lifes which can be found on a natural decay series chart for the said element. The thorium in either case then beta decays to another element.
When tritium-3 emits a beta particle, it becomes helium-3. The beta particle is an electron, so when it is emitted, a neutron in the tritium nucleus is converted into a proton, resulting in helium-3, which has two protons and one neutron.
The isotope formed when tritium (3H) emits a beta particle is helium-3 (3He). This process occurs when a neutron in the tritium nucleus converts to a proton, releasing a beta particle (electron) and an electron antineutrino.
When a nucleus emits a beta particle, it loses one of its neutrons and gains one proton. Hence, it's mass and atomic number remain the same but its charge and What_happens_to_a_nucleus_when_it_emits_a_beta_particlenumber is increased by +1.
The resulting element is protactinium, atomic number 91.
No, thorium emitting a beta particle is a nuclear reaction, not a chemical reaction. In a beta decay process, a neutron in the thorium nucleus converts into a proton, emitting a beta particle (an electron) and an antineutrino. This type of decay is a form of radioactive decay, which is a nuclear process involving changes in the nucleus of an atom.
An example of beta decay for a thorium isotope: Th-231(beta)Pa-231.
When (^{222}Rn) emits a beta particle, it transforms into (^{222}Fr), which is Francium.
When 60Co decays by beta- decay it produces 60Ni.
Alpha decay occurs when thorium-231 undergoes radioactive decay to form protactinium-231. In alpha decay, a nucleus emits an alpha particle (two protons and two neutrons) to transform into a nucleus with a lower atomic number.
In beta decay of thorium-234, a neutron in the nucleus of thorium-234 is transformed into a proton, releasing an electron (beta particle) and an antineutrino. This process converts the thorium-234 nucleus into protactinium-234.
alpha particles.
Beta Particle
Uranium has a different decay chain/series for its different isotopes. Uranium 238 for example first decays to thorium 234 through alpha decay while U235 alpha decays to thorium 231. Both have different half lifes which can be found on a natural decay series chart for the said element. The thorium in either case then beta decays to another element.
When U-235 emits a beta particle, it undergoes beta decay, transforming into Neptunium-235 (Np-235). During this process, a neutron in the nucleus of U-235 is converted into a proton, releasing a beta particle in the form of an electron and an antineutrino.
When tritium-3 emits a beta particle, it becomes helium-3. The beta particle is an electron, so when it is emitted, a neutron in the tritium nucleus is converted into a proton, resulting in helium-3, which has two protons and one neutron.