Neither. Volume is independent of mass. Effectively, if you increase the volume of a substance you are moving the particles that comprise that substance apart. Eventually, you would have a gas which expands to fill the volume of its container.
Pressure can be increased by adding more force or reducing the area over which the force is applied. It can be decreased by reducing the force or increasing the area over which the force is distributed. Additionally, changing the volume of a container can also affect pressure, as pressure is inversely proportional to volume for a fixed amount of gas.
An increase in blood pressure, blood volume, or permeability of the filtration barrier would increase net filtration pressure. On the other hand, a decrease in blood pressure, blood volume, or an increase in plasma protein concentration would decrease net filtration pressure.
1) Increase in heat 2)Decrease in volume
When the volume of a gas increases and its pressure decreases, the state of the gas is expanding. This typically occurs when the gas is allowed to do work by pushing against a piston, which results in an increase in volume and a decrease in pressure.
Pressure can be increased in a gaseous system by either decreasing the volume of the system or increasing the number of gas molecules present. This can be achieved by compressing the gas into a smaller space or by adding more gas molecules to the system.
The volume decrease and the density increase.
Volume & pressure are inversely proportionate, if temperature stays constant volume would decrease at a factor proporionate to the increase in pressure.
Pressure can be increased by adding more force or reducing the area over which the force is applied. It can be decreased by reducing the force or increasing the area over which the force is distributed. Additionally, changing the volume of a container can also affect pressure, as pressure is inversely proportional to volume for a fixed amount of gas.
Volume decrease.
An increase of the temperature or a decrease of the pressure.
If the pressure on a gas increases, its volume would generally decrease, provided that the temperature remains constant. This relationship is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is held constant.
According to Boyle's Law of Pressure-Volume Relationship, an increase in the pressure of a gas will decrease it's volume. And according to Charles's Law of Temperature-Pressure Relationship, an increase in pressure causes an increase in temperature.
An increase in blood pressure, blood volume, or permeability of the filtration barrier would increase net filtration pressure. On the other hand, a decrease in blood pressure, blood volume, or an increase in plasma protein concentration would decrease net filtration pressure.
Pressure and volume are inversely related in a system at constant temperature (Boyle's Law). As pressure increases, volume decreases and vice versa. This relationship is direct in the sense that an increase in pressure leads to a decrease in volume, and a decrease in pressure leads to an increase in volume.
It would increase.
The Ideal Gas Law states that PV=nRT, where P=pressure, V=volume, n=number of moles of gas, R=the relativity constant, and T=temp in Kelvin. According to this law, volume (V) varies as V=(nRT)/P. Using this, we can determine that the volume would normally increase with an increase in the number of moles and/or an increase in the temperature and/or a decrease in pressure. Therefore, we can logically determine that the volume of a gas would decrease in the instance of increasing temperature if either the number of moles of gas was decreased or the pressure was increased (to an extent where the level of volume increase by temperature change has been overcome.)
The pressure on the low pressure side of a system is determined by factors such as the volume of the system, the amount of gas present, and the temperature. A decrease in volume or an increase in temperature can lead to an increase in pressure. Conversely, an increase in volume or a decrease in temperature can lead to a decrease in pressure on the low pressure side.