Yes
If the concentration of glucose is higher inside the cell than outside, glucose will diffuse out of the cell to achieve equilibrium. This process occurs through passive transport, where molecules move from an area of higher concentration to an area of lower concentration. As a result, the concentration of glucose inside the cell will decrease while it increases outside until equilibrium is reached.
The concentration of glucose is typically higher in plasma (blood) compared to cerebrospinal fluid because glucose is actively transported from blood into the brain. Normal CSF glucose levels are around 60-70% of plasma glucose levels.
If the concentration of glucose is higher outside the cell than inside, glucose will diffuse into the cell down its concentration gradient. This process occurs through passive transport, where molecules move from an area of higher concentration to an area of lower concentration. The diffusion will continue until equilibrium is reached, or until the concentration inside the cell matches that outside.
The concentration of glucose is typically higher in the blood compared to the intestine. After consuming food, glucose is absorbed from the intestine into the bloodstream to provide energy for the body. Any excess glucose is stored in the liver or muscles for later use.
Yes
If the concentration of glucose is higher inside the cell than outside, glucose will diffuse out of the cell to achieve equilibrium. This process occurs through passive transport, where molecules move from an area of higher concentration to an area of lower concentration. As a result, the concentration of glucose inside the cell will decrease while it increases outside until equilibrium is reached.
The concentration of glucose is typically higher in plasma (blood) compared to cerebrospinal fluid because glucose is actively transported from blood into the brain. Normal CSF glucose levels are around 60-70% of plasma glucose levels.
If the concentration of glucose is higher outside the cell than inside, glucose will diffuse into the cell down its concentration gradient. This process occurs through passive transport, where molecules move from an area of higher concentration to an area of lower concentration. The diffusion will continue until equilibrium is reached, or until the concentration inside the cell matches that outside.
The concentration of glucose is typically higher in the blood compared to the intestine. After consuming food, glucose is absorbed from the intestine into the bloodstream to provide energy for the body. Any excess glucose is stored in the liver or muscles for later use.
i know it's higher than corresponding blood glucose concentration from 10 - 15%
Yes, during process of osmoses the solvent from higher concentration to lower concentration moves through semipermeable membrane, the 2% solution has lower concentration of solute therefore higher concentration of solvent.
The rate of diffusion tapers off with higher amounts of glucose due to the principle of concentration gradient. As the concentration of glucose increases, the gradient between areas of high and low concentration decreases, resulting in slower diffusion rates. This is because diffusion is driven by the movement of molecules from areas of high concentration to areas of low concentration, and as the concentration levels equalize, the rate of diffusion decreases.
In order for a cell in a culture to obtain glucose, the concentration of glucose must be higher outside the cell than inside. This concentration gradient allows for the process of diffusion, where glucose molecules move passively into the cell. Additionally, if the glucose concentration outside the cell is low, cells may require active transport mechanisms to uptake glucose against the gradient. Overall, maintaining an adequate external glucose concentration is crucial for cellular metabolism and energy production.
In order for a cell to obtain glucose in a culture, the concentration of glucose must be higher outside the cell than inside. This concentration gradient allows for passive transport mechanisms, such as facilitated diffusion, to occur, enabling glucose to enter the cell. If the external glucose concentration is too low, the cell may struggle to uptake sufficient glucose for energy and metabolism. Therefore, maintaining an adequate glucose concentration in the culture medium is crucial for optimal cell growth and function.
Water will move out of the cell. Glucose will not move into the cell without the help of a helper molecule. Glucose molecules will diffuse into the cell.(APEX)
In order for a cell in a culture to obtain glucose, the concentration of glucose must be higher outside the cell than inside. This concentration gradient allows for passive transport mechanisms, such as facilitated diffusion, to occur, enabling glucose to move into the cell. If the external concentration is too low, glucose uptake may be insufficient to meet the cell's metabolic needs.