The correct pairs of DNA bases are adenine (A) with thymine (T), and cytosine (C) with guanine (G). This pairing is based on the complementary base pairing rule in DNA, where A always pairs with T and C always pairs with G.
Having the correct pair of nitrogenous bases is essential for accurate DNA replication and protein synthesis. Base pairing ensures that the genetic code is preserved during cell division, preventing mutations that could lead to diseases. Additionally, proper base pairing allows for the formation of stable double helices, which is crucial for the structural integrity of DNA. Ultimately, accurate base pairing underpins the fidelity of genetic information transfer across generations.
In DNA (Deoxtribonucleic acid) there are 4 bases and the pairning rules are as follows: Adenine-Thymine and the other is Guanine-Cytosine However in RNA (Ribonucleic Acid) the bases are different and thus the base pairing-the "complimentary pairs" are Adenine-Uracil and Guanine-Cytosine
The DNA of mammals contains four nitrogenous bases: adenine (A), thymine (T), cytosine (C), and guanine (G). These bases pair specifically, with adenine pairing with thymine and cytosine pairing with guanine, forming the rungs of the DNA double helix. This sequence of bases encodes genetic information crucial for the development and functioning of the organism.
In DNA, the nitrogen base adenine (A) pairs with the nitrogen base thymine (T), and the nitrogen base cytosine (C) pairs with the nitrogen base guanine (G). So the base pairs are A:T and C:G. One way to remember is that A:T spells the word "at."
The correct pairs of DNA bases are adenine (A) with thymine (T), and cytosine (C) with guanine (G). This pairing is based on the complementary base pairing rule in DNA, where A always pairs with T and C always pairs with G.
A with T, and C with G.
Adenine pairs with Thymine and Guanine pairs with Cytosine. This pairing is known as complementary base pairing and is essential for DNA replication and protein synthesis.
Base pairing in DNA replication ensures that the correct nucleotides are added to the new DNA strand, matching with their complementary bases. This contributes to the accuracy of DNA replication by reducing the chances of errors or mutations in the newly synthesized DNA strand.
A with T, and C with G.
The correct base-pairing rules in DNA are adenine (A) pairing with thymine (T) and guanine (G) pairing with cytosine (C). This forms complementary base pairs that contribute to the double-helix structure of DNA.
The pairing pattern of DNA bases in a double helix structure is complementary. Adenine pairs with thymine, and guanine pairs with cytosine. This pairing is essential for the accurate replication of DNA during cell division.
The correct base-pairing rules for DNA are adenine (A) pairing with thymine (T), and cytosine (C) pairing with guanine (G). This complementary base pairing allows DNA replication to occur accurately, ensuring genetic information is faithfully transmitted during cell division.
The bases in DNA are read in pairs, with adenine pairing with thymine and cytosine pairing with guanine. These pairs are known as base pairs.
complementary pairing of nitrogenous bases
Adenine pairs with thymine, and cytosine pairs with guanine.
Having the correct pair of nitrogenous bases is essential for accurate DNA replication and protein synthesis. Base pairing ensures that the genetic code is preserved during cell division, preventing mutations that could lead to diseases. Additionally, proper base pairing allows for the formation of stable double helices, which is crucial for the structural integrity of DNA. Ultimately, accurate base pairing underpins the fidelity of genetic information transfer across generations.