The element that contains five electrons in its 3d orbital is manganese (Mn). Manganese has an atomic number of 25, and its electron configuration is [Ar] 4s² 3d⁵. This means it has five electrons in the 3d subshell.
s contains one orbital with a maximum of 2 electrons p contains three orbitals with a maximum of 6 electrons d contains five orbitals with a maximum of 10 electrons f contains seven orbital with a maximum of 14 electrons
The d sublevel always contains 5 orbitals. Therefore the d sublevel can accommodate 10 electrons just the same as 3d and 4d orbitals. Each of the 5 separate d orbitals can only contain two electrons.
Noble gas notation is used to represent the electron configuration of an element in a condensed form, by using the symbol of the nearest noble gas that precedes the element. In the case of fluorine, the noble gas notation would be [He] 2s22p5, indicating that fluorine has two electrons in the 2s orbital and five electrons in the 2p orbital.
There are five orbitals in a d orbital: dxy, dyz, dxz, dx^2-y^2, and dz^2. Each orbital can hold a maximum of 2 electrons, resulting in a total of 10 electrons that can be accommodated in a d orbital.
2. The five d orbitals can hold ten in total.
The orbital diagram for V5 consists of five electrons in the 3d orbital and no electrons in the 4s orbital.
s contains one orbital with a maximum of 2 electrons p contains three orbitals with a maximum of 6 electrons d contains five orbitals with a maximum of 10 electrons f contains seven orbital with a maximum of 14 electrons
The orbital diagram of vanadium shows five electrons in the 3d orbital and two electrons in the 4s orbital. This configuration is written as Ar 3d3 4s2.
Nitrogen has 7 electrons in total. In its ground state, nitrogen has two electrons in the 1s orbital and five electrons in the 2p orbital. Therefore, there are 3 electrons in the higher energy level (2p orbital) of nitrogen.
The orbital diagram for vanadium shows five electrons in the 3d orbital and two electrons in the 4s orbital. This arrangement reflects the electron configuration of vanadium, which is Ar 3d3 4s2.
The d orbital is the orbital that only applies to the 3rd orbital and up and it contains 10 electrons.
The electron configuration for bromine is [Ar] 4s2 3d10 4p5. This means that bromine has two electrons in the 4s orbital, ten electrons in the 3d orbital, and five electrons in the 4p orbital.
The electron structure of ammonia (NH3) consists of two electrons in the 1s orbital, two in the 2s orbital, and three in the 2p orbital for a total of five valence electrons. Boron trifluoride (BF3) contains three valence electrons in the 2s and 2p orbitals of the boron atom, and three bonding pairs from the fluorine atoms.
there are two shells of electrons in the nitrogen atom that actually have electrons in them, nitrogen has two electrons in the first shell, the S orbital, and five in the outer shell, the P orbital. this causes nitrogen to have a valence shell with five electrons.
The d sublevel always contains 5 orbitals. Therefore the d sublevel can accommodate 10 electrons just the same as 3d and 4d orbitals. Each of the 5 separate d orbitals can only contain two electrons.
Noble gas notation is used to represent the electron configuration of an element in a condensed form, by using the symbol of the nearest noble gas that precedes the element. In the case of fluorine, the noble gas notation would be [He] 2s22p5, indicating that fluorine has two electrons in the 2s orbital and five electrons in the 2p orbital.
An orbital diagram for fluorine would show two electrons in the 1s orbital, two electrons in the 2s orbital, and five electrons in the 2p orbital (one electron in each of the three 2p orbitals and two electrons in one). This arrangement represents the electron configuration of fluorine as 1s^2 2s^2 2p^5.