Calcium ions cause the neurotransmitter vesicles to fuse with the axon terminal. When an action potential reaches the axon terminal, voltage-gated calcium ion pores are opened, allowing calcium ions into the axon terminal. These ions initiate the release of neurotransmitter vesicles stored on elements of the cytoskeleton located near the presynaptic membrane; they then travel to the presynaptic membrane, where they first dock, and then fuse with the presynaptic membrane, forming an opening or pore through which the neurotransmitters are released into the synaptic cleft.
Calcium ions are responsible for triggering the fusion of neurotransmitter vesicles with the axon's membrane during the conduction of a nerve impulse. The influx of calcium ions into the neuron's terminal triggers the release of neurotransmitters into the synaptic cleft.
synaptic vesicles
a neural impulse(electrical impulse) is released and it travels down the axon of a neuron to the axon terminals. At the axon terminal there are sacs called synaptic vesicles which contain chemicals called neurotransmitters. When the neural impulse reaches the terminal it causes the sacs to move closer to the membrane of the axon terminal and release the neurotransmitters inside. Then neurotransmitters travel across the synaptic gap and stimulate the dendrites of another neuron and the whole process starts again.
Chemicals called neurotransmitters move across the synaptic gap by diffusion and carry a neural signal across to the receiving neuron. But the 'bubbles' (vesicles) which contained the neurotransmitter chemicals do NOT themselves cross the synaptic gap, they just release the neurotransmitters into the synaptic gap. (The neurotransmitters move across the synapse, the vesicles do not.)The vesicles release their contents of neurotransmitters into the synaptic gap by a process called exocytosis, in which the neural impulse which reaches the terminal button of the presynaptic neuron causes voltage-gated calcium ion pores to open, allowing an influx of calcium ions, which leads to the fusing of the vesicles to the cell membrane, which amounts to the vesicles 'turning themselves inside out' as the membrane of the vesicle merges with the cell membrane, which expels the neurotransmitters into the synaptic gap.The neurotransmitters flow across the synapse to bind with the postsynaptic neuron, potentially triggering neuron excitation (firing) or inhibition (preventing firing).
When the _____________reaches the ends of the axon the neurotransmitter is released and it diffuses to the muscle cell membrane to combine with receptors there?Sarcolemma
Calcium ions are responsible for triggering the fusion of neurotransmitter vesicles with the axon's membrane during the conduction of a nerve impulse. The influx of calcium ions into the neuron's terminal triggers the release of neurotransmitters into the synaptic cleft.
synaptic vesicles
I believe it's Na+
it is sent through the neurotransmittersAt the synaptic terminal an electrical impulse will trigger the migration of vesicles containing neurotransmitters toward the presynaptic membrane.
Synaptic vesicles contain neurotransmitters, which are chemicals that transmit signals between nerve cells (neurons) in the brain and nervous system. When a nerve impulse reaches the end of a neuron, synaptic vesicles release neurotransmitters into the synapse, where they bind to receptors on the neighboring neuron to transmit the signal.
a neural impulse(electrical impulse) is released and it travels down the axon of a neuron to the axon terminals. At the axon terminal there are sacs called synaptic vesicles which contain chemicals called neurotransmitters. When the neural impulse reaches the terminal it causes the sacs to move closer to the membrane of the axon terminal and release the neurotransmitters inside. Then neurotransmitters travel across the synaptic gap and stimulate the dendrites of another neuron and the whole process starts again.
The small microscopic gabs b/w the two neurons are called "Synapse". The conduction of nerve impulse through this synapse is made possible through Neurotransmitters. As the impulse reaches at the Pre-synaptic membrane the small vesicles release these Neurotransmitters which initialize the impulse in post-synaptic membrane.
Chemicals called neurotransmitters move across the synaptic gap by diffusion and carry a neural signal across to the receiving neuron. But the 'bubbles' (vesicles) which contained the neurotransmitter chemicals do NOT themselves cross the synaptic gap, they just release the neurotransmitters into the synaptic gap. (The neurotransmitters move across the synapse, the vesicles do not.)The vesicles release their contents of neurotransmitters into the synaptic gap by a process called exocytosis, in which the neural impulse which reaches the terminal button of the presynaptic neuron causes voltage-gated calcium ion pores to open, allowing an influx of calcium ions, which leads to the fusing of the vesicles to the cell membrane, which amounts to the vesicles 'turning themselves inside out' as the membrane of the vesicle merges with the cell membrane, which expels the neurotransmitters into the synaptic gap.The neurotransmitters flow across the synapse to bind with the postsynaptic neuron, potentially triggering neuron excitation (firing) or inhibition (preventing firing).
When the _____________reaches the ends of the axon the neurotransmitter is released and it diffuses to the muscle cell membrane to combine with receptors there?Sarcolemma
The neurotransmitters are stored in tiny sac-like structures called vesicles at the end of axons. When an impulse, or nerve signal, reaches the end of the axon, the vesicles release a neurotransmitter into the small space between the adjoining cells (synaptic gap). Neurotransmitters diffuse across the synapse and bind to receptors in the receiving cell that are specific for the neurotransmitter.
The impulse ends in the terminal or synaptic knob. Here neurotransmitters are put in vesicles and travel across the synaptic cleft to the next neuron.
are called synaptic vesicles. They contain specific neurotransmitters that are released into the synaptic cleft when the nerve impulse reaches the end of the axon. The neurotransmitters then bind to receptors on the neighboring neuron, continuing the signal transmission.