answersLogoWhite

0

The formation of photoelectrons is primarily influenced by the intensity of incident light and the energy of the photons striking the material. The material's work function, which is the minimum energy required to remove an electron from its surface, also plays a crucial role in determining the photoelectric effect.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Natural Sciences

What effect would lower wavelength have on the emitted photoelectrons?

Lowering the wavelength of incident light increases its energy, which in turn can increase the kinetic energy of the emitted photoelectrons. This is in line with the photon energy equation E=hf, where E is energy, h is Planck's constant, and f is frequency (which is inversely proportional to wavelength).


Electrons ejected in the photoelectric effect are called?

Photo electrons. So current due to these photo electrons is named as photo electric current.


All the photo electrons do not have same energy why?

Photoelectrons do not have the same energy because each electron absorbs a different amount of energy from the incident photons based on the specific interaction between the photon and the electron. This is influenced by factors such as the photon energy, the binding energy of the electron in the material, and the angle of incidence. As a result, photoelectrons exhibit a range of energies rather than a single, uniform energy level.


What matters are made up of atoms?

all matters are.............................


How does light intensity affect the stopping potential?

It doesn't, from the equation E = h*f (E is energy, h is Planck's constant, f is frequency) you can clearly see that energy is a function of frequency, not amplitude (intensity). Therefore, it doesn't even matter what the relationship between stopping potential and energy is, because it will only depend on frequency, which is sufficient knowledge to answer this question.

Related Questions

What determine the maximum velocity of photoelectrons?

The maximum velocity of photoelectrons is determined by the energy of the incident photons in the photoelectric effect. The higher the energy of the photons, the higher the maximum velocity of the emitted photoelectrons.


When a source of dim orange light shines on a photosensitive metal no photoelectrons are ejected from its surface What could be done to increase the likelihood of producing photoelectrons?

increase the brightness of of the orange light source


How does an increase in the intensity affect the maximum kinetic energy of the photoelectrons?

An increase in the intensity of light does not affect the maximum kinetic energy of photoelectrons. The maximum kinetic energy of photoelectrons is determined by the frequency of the incident light, according to the photoelectric effect equation E = hf - φ, where f is the frequency of the light and φ is the work function of the material.


Can esca with only an x ray source with aluminum target distinguish between auger and photoelectrons?

No.


What science words start with a p?

photosynthesis, physical change, photon, photoelectrons, prokaryotic cell


What happens to photons and photoelectrons when you double the amount of light shining on the metal?

If you double the amount of light shining on a metal, you will increase the number of photons hitting the metal surface. This can lead to more photoelectrons being ejected from the metal due to the increased energy provided by the additional photons.


What is the significance of the maximum kinetic energy of photoelectrons in the context of photoelectric effect?

The maximum kinetic energy of photoelectrons in the photoelectric effect is significant because it helps determine the energy of the incoming photons. This energy is crucial in understanding how light interacts with matter and can provide insights into the properties of materials.


What effect would lower wavelength have on the emitted photoelectrons?

Lowering the wavelength of incident light increases its energy, which in turn can increase the kinetic energy of the emitted photoelectrons. This is in line with the photon energy equation E=hf, where E is energy, h is Planck's constant, and f is frequency (which is inversely proportional to wavelength).


Why do all photoelectrons not come with the same kinetic energy?

Some energy is lost in releasing the electrons from the nucleus. This energy is known as the work function, which relates to the threshold frequency. Therefore, the kinetic energy of the released photoelectron is equal to the photon energy minus the work function.


Electrons ejected in the photoelectric effect are called?

Photo electrons. So current due to these photo electrons is named as photo electric current.


Is it the number of total electrons or the number of electrons on the outer shell that matters when dealing with bonding?

The number of electrons on the outer shell is what matters when dealing with bonding. These outer shell electrons, also known as valence electrons, are involved in the formation of chemical bonds between atoms.


All the photo electrons do not have same energy why?

Photoelectrons do not have the same energy because each electron absorbs a different amount of energy from the incident photons based on the specific interaction between the photon and the electron. This is influenced by factors such as the photon energy, the binding energy of the electron in the material, and the angle of incidence. As a result, photoelectrons exhibit a range of energies rather than a single, uniform energy level.