fluorine
Cryolite, with the chemical formula Na3AlF6, contains sodium (Na), aluminum (Al), and fluorine (F). In this compound, sodium has an oxidation state of +1, aluminum has an oxidation state of +3, and fluorine has an oxidation state of -1. Therefore, the overall oxidation states are: Na (+1), Al (+3), and F (-1).
O = -2 oxidation state H = +1 oxidation state
Generally third A group elements in the periodic table exhibit +3 oxidation state but Boron exhibit negative oxidation state also . The stable oxidation state of Tl is +1. It exhibit +3 also but +1 is more stable than +3. RGUKT IIIT NUZVID N091528
In a compound the sum of oxidation states of the elements contained is zero.E1 + E2 + ... = 0If you know the oxidation states of the elements E1... you can calculate the oxidation state of the element E2.
The oxidation state of F in HOF (hydrogen monofluoride) is -1. Hydrogen is typically assigned an oxidation state of +1, leaving the fluorine with an oxidation state of -1.
Elements with fixed oxidation numbers include alkali metals (group 1 elements) which have a +1 oxidation state, alkaline earth metals (group 2 elements) which have a +2 oxidation state, and nonmetals in group 17 (halogens) which have a -1 oxidation state in compounds.
The oxidation number for K in KCl is +1, as alkali metals (Group 1 elements) typically have a +1 oxidation state. For Cl in KCl, the oxidation number is -1, as halogens (Group 17 elements) typically have a -1 oxidation state when they form ionic compounds.
The oxidation numbers in group A elements typically increase by one as you move from left to right across the periodic table. For example, group 1 elements usually have an oxidation state of +1, while group 7 elements typically have an oxidation state of -1.
When halogens bind to more electropositive elements (compared it itself), they show -1 oxidation state. When halogens bind to more electronegative elements (compared it itself), they show +1 oxidation state.
There are three elements, carbon, oxygen and hydrogen. Carbon's oxidation number is -4, each hydrogen is +1 and oxygen is +2.
all the pure elements have zero oxidation state.....
2Na + Cl2 -> 2NaCl. The oxidation state of the sodium ion in NaCl is +1 and the oxidation state of Chloride ion is -1. Oxidation states of the elemental reactants is zero (as for all elements)
Group 1 elements have an oxidation number of +1.
The oxidation state of chloride (Cl) is -1. As a halogen, chloride is usually found with an oxidation state of -1 in most compounds.
Elements that have a single oxidation number include group 1 elements (e.g. sodium, potassium) which have an oxidation number of +1, and group 2 elements (e.g. magnesium, calcium) which have an oxidation number of +2.
O = -2 oxidation state H = +1 oxidation state
This oxidation state is 1.