Galileo Galilli
Newton's first equation of motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In other words, an object will maintain its velocity unless a net external force is applied to change it.
einstein
Newton's first law of motion states that momentum is a property of a mass system that is conserved as long as no net force is applied on it. If the question refers to Newton's second law of motion, the answer is yes.
He discovered gravity, the three laws of motion, and the color spectrum.
F=ma or m=F/a
Sir Isaac Newton discovered motion and so invented the "Laws Of Motion".
Quadratic equation
he discovered the motion of stars he discovered the motion of stars
means motion of equation
For an object moving with uniform motion, the equation of motion does not change. The equation remains the same as it describes the relationship between an object's position, velocity, and time regardless of whether the motion is uniform or non-uniform. Uniform motion implies constant velocity, so the acceleration term in the equation of motion is zero.
Both are same..just the names are different.
Newton's first equation of motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In other words, an object will maintain its velocity unless a net external force is applied to change it.
The motion of an object described by an equation will depend on the specific equation used. Common equations to describe motion include position, velocity, and acceleration functions. By analyzing these equations, you can determine how the object moves over time, its speed, and its direction of motion.
a motion request to the court to enter particular order
The zigzag motion of particles was discovered by Japanese physicist Shoji Asada in 1952. This phenomenon is known as Brownian motion and is caused by the random movement of particles suspended in a fluid.
The equation that connects force and motion is Newton's second law: F = ma, where F is the force applied to an object, m is its mass, and a is its acceleration. This equation quantifies how the force acting on an object influences its motion.
The equation to determine an object in motion is the equation of motion, which is typically represented as: ( s = ut + \frac{1}{2}at^2 ), where ( s ) is the displacement of the object, ( u ) is the initial velocity, ( a ) is the acceleration, and ( t ) is the time.