S waves do not pass through Earth's liquid outer core, which causes a shadow zone on the opposite side of the Earth from an earthquake. The liquid outer core absorbs and blocks S waves, preventing them from reaching the surface beyond the shadow zone.
The shadow zone is caused by S-waves as they travel through Earth. S-waves, however, cannot travel through the outer core of the Earth, which is molten. This is because S-waves lose velocity when travelling through a liquid.
In shadow zone, seismograph does not record signals. For P-wave it is b/w 104-145 degress.These earthquake waves exhibit same properties as other waves like reflection, refraction etc.As core has denser matter so P-waves will bend inward and hences they will form a shadow zone. S-waves don't pass through liquid phase, core. So, shadow zone is larger here.
In the Earth's outer core, which is composed of molten iron and nickel, seismic waves (P and S waves) are not able to travel through it due to its liquid state. This causes a shadow zone on the opposite side of the Earth from a seismic event, where P waves are completely deflected and S waves are not detected.
An s-wave shadow zone is formed as seismic waves travel through the Earth's body. Which of the following statements does this s-wave shadow zone indicate?
S waves do not pass through Earth's liquid outer core, which causes a shadow zone on the opposite side of the Earth from an earthquake. The liquid outer core absorbs and blocks S waves, preventing them from reaching the surface beyond the shadow zone.
The shadow zone, located at a distance of 103 to 143 degrees from the earthquake epicenter, is the area on Earth's surface where both P and S waves are completely absorbed and do not arrive due to the core's properties.
The shadow zone is caused by S-waves as they travel through Earth. S-waves, however, cannot travel through the outer core of the Earth, which is molten. This is because S-waves lose velocity when travelling through a liquid.
The shadow zone
The shadow zone
S waves cannot pass through the outer core. P waves can pass through both outer and inner core.
In shadow zone, seismograph does not record signals. For P-wave it is b/w 104-145 degress.These earthquake waves exhibit same properties as other waves like reflection, refraction etc.As core has denser matter so P-waves will bend inward and hences they will form a shadow zone. S-waves don't pass through liquid phase, core. So, shadow zone is larger here.
In the Earth's outer core, which is composed of molten iron and nickel, seismic waves (P and S waves) are not able to travel through it due to its liquid state. This causes a shadow zone on the opposite side of the Earth from a seismic event, where P waves are completely deflected and S waves are not detected.
The band around the Earth where seismic waves are not detected is called the "shadow zone." This region exists between 105 to 140 degrees from the epicenter of an earthquake and is caused by the refraction of seismic waves within the Earth's core. It is divided into two main parts, the P-wave shadow zone and the S-wave shadow zone.
In simple terms the shadow zone of the S-wave is larger because of the Earth's liquid outer core. The S-wave cannot travel through the liquid outer core but the P-waves get refracted at the boundary between the mantle and the outer core. This is why the S-wave shadow zone is larger than the P wave shadow zone. P waves are refracted at the liquid outer core of the Earth, while S waves are attenuated or stopped entirely. This allows P waves to go "around" the core and reach locations on the far side of the Earth that are within the shadow of the S waves. -- A P-wave is a longitudinal wave with an alternating stretching and compressing motion in the direction of propagation. An S wave is a transverse wave with a vertical motion perpendicular to the direction of propagation. The shadow zone of a P-wave exists from 105 to 143 degrees (epicentral distance). This is caused by P waves meeting the liquid outer core and being refracted. Part of the P wave is also reflected by the outer core and as a result of the two, a shadow zone exists. The shadow zone of an S-wave exists from 105 to 180 degrees (epicentral distance). S-waves cannot travel through liquids at all so rather than being refracted by the liquid outer core and traveling through it, they are totally reflected, resulting in a shadow zone from 105 to 180 degrees.
An s-wave shadow zone is formed as seismic waves travel through the Earth's body. Which of the following statements does this s-wave shadow zone indicate?
This is caused by the density variations in the earth which cause the velocity of seismic waves to change as they move between them which in turn causes refraction of the waves. Further to this, the earth's outer core is a liquid which prevents seismic S-waves from travelling through it. This leads to a zone on the opposite side of the earth from an earthquake where S-waves are not detected.