half life tell time
Half-lives of radioactive isotopes are between several nanoseconds and more than 10e22 years.
The half-life of most radioactive isotopes ranges from fractions of a second to billions of years. Some common radioactive isotopes, like carbon-14 and uranium-238, have half-lives of thousands to millions of years, while others, like iodine-131, have half-lives of only days or even seconds.
Boron has two stable isotopes: boron-10 and boron-11. Additionally, there are several radioactive isotopes of boron, but they are not stable and have relatively short half-lives. The presence of these isotopes makes boron an interesting element in various scientific and industrial applications, including nuclear reactions and materials science.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
The same element can have different half-lives, for different isotopes. You can find a list at the Wikipedia article "List of radioactive isotopes by half-life". This list is NOT complete; a complete list would have about 3000 nuclides (that is, isotopes).
This is the time in which half the the atoms was disintegrated.
Silver itself is not radioactive. However, certain isotopes of silver can be radioactive. For example, silver-108 and silver-110 are radioactive isotopes with long half-lives that can undergo radioactive decay. These isotopes are not commonly found in nature.
Half-lives of radioactive isotopes are between several nanoseconds and more than 10e22 years.
This is the time in which half the the atoms was disintegrated.
It really applies to radioactive isotopes, not elements. An element may have different isotopes, some of which are radioactive, some not.The half-life is the time it takes for half of a sample to decay - for the atoms to convert to some other type of atom.
The radioactive parent isotope with the shortest half-life among the options provided.
All the isotopes of uranium and plutonium are radioactive; plutonium isotopes have a greater specific activity. For cerium: the isotopes 136Ce and 142Ce are possible to be radioactive but having very long half lives and a not significative radioactivity.
There is a very wide range of half-life for different radioactive isotopes, ranging from the billions of years to very small fractions of a second. So some isotopes disintegrate immediately, and others last a very long time.
Technetium (Tc) is the element that has no stable isotopes. All of its isotopes are radioactive with half-lives ranging from minutes to millions of years.
The half-life of most radioactive isotopes ranges from fractions of a second to billions of years. Some common radioactive isotopes, like carbon-14 and uranium-238, have half-lives of thousands to millions of years, while others, like iodine-131, have half-lives of only days or even seconds.
Examples characteristics: half life, specific activity, radiotoxicity.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.