To bond together, two nuclei must be thrown together with great force. This is because every nucleus has a positive charge and the nuclei repel each other when they come close. If that resistance is overcome and the nuclei actually begin to impact each other, then it is possible for one proton in one nucleus to change to a neutron and bind or 'fuse' together with the other nucleus.
The great force required here includes both extreme heat and extreme pressure, comparable to that inside stars.
The core of the protostar reached an extremely high temperature
The onset of fusion reactions inside stars requires high density and high temperature. The high density is needed to bring atomic nuclei close enough together for the strong nuclear force to overcome electrostatic repulsion, allowing the nuclei to fuse. The high temperature is required to provide the particles with enough kinetic energy to overcome the electrical repulsion and fuse.
Nuclear fusion occurs in the solar core.
No, nuclear fusion does not occur in the convection zone of a star. Fusion reactions primarily take place in the core region of a star, where the temperature and pressure are high enough to sustain the nuclear reactions that power the star. The convection zone is a region of the star where heat is transported through the movement of gas, but fusion does not occur there.
Actually room temperature nuclear fusion has been verified by reputable scientists, but it only works with muonic-hydrogen. This is hydrogen with its electron replaced by a muon, a particle identical to the electron except that it weighs 200 times as much. Because of the extra mass the muon orbits the proton much closer than the electron does. This allows muonic-hydrogen nuclei to collide and fuse at room temperature. However it takes far more energy to make the muons and replace them for the electrons than can be obtained from the fusion.
Nuclear fusion requires extremely high temperature and great pressure.
In areas of high temperature and high pressure
Nuclear fusion reactions require extremely high temperatures, typically in the range of 100 million to 150 million degrees Celsius, in order to overcome the electrostatic repulsion between positively charged atomic nuclei and allow them to fuse together. This extreme heat is needed to create the conditions necessary for the fusion process to occur and release energy.
Because of the nuclear fusion that it does.
For nuclear fusion.
The high temperature and pressure in the Sun's interior causes nuclear fusion.
The core of the protostar reached an extremely high temperature
The onset of fusion reactions inside stars requires high density and high temperature. The high density is needed to bring atomic nuclei close enough together for the strong nuclear force to overcome electrostatic repulsion, allowing the nuclei to fuse. The high temperature is required to provide the particles with enough kinetic energy to overcome the electrical repulsion and fuse.
At the center, both the temperature and the pressure are highest. Both a high pressure and a high temperature increase the likelihood of fusion.
The two main forces in a star are gravity and nuclear fusion. Gravity pulls matter inward, compressing it and creating the high pressure and temperature needed for nuclear fusion to occur. Nuclear fusion releases energy as light and heat, which counteracts the force of gravity trying to collapse the star.
Not nuclear, it takes an extremely hight temperature for Fusion to occur with in the sun or any other star. ADDED: Yes "nuclear". Fusion is one of the two type of nuclear reaction, the other being Fission.
For nuclear fission reactors there is no critical temperature, though they do have a temperature coefficient which makes the efficiency of the chain reaction vary slightly with temperature. This can be negative or positive, obvously a negative coefficient is preferred and is safer. Nuclear fusion is another matter, and very high temperatures are required in tokamaks to get fusion started