answersLogoWhite

0

The material in the asthenosphere rises when heated because of its reduced density. As it absorbs heat, the material becomes less dense compared to the cooler surrounding rocks. This buoyant force causes the heated material to rise towards the surface.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Natural Sciences

Does the cooler material in the asthenosphere rise toward the lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to its relatively higher density. As it approaches the lithosphere, this cooler material can create convective currents that contribute to plate tectonics and volcanic activity.


Does cooler material in the asthenosphere rises towards the lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to convection currents. As the cooler material sinks, it displaces warmer material, creating a cycle of movement within the asthenosphere. This movement can contribute to the tectonic plate motion on the Earth's surface.


Is magma in the asthenosphere?

Yes, magma can be found in the asthenosphere. The asthenosphere is a partially molten layer beneath the lithosphere where magma can be generated due to the high temperatures and pressures. This molten material can rise to the surface through volcanic activity.


What is Molten rock material from the asthenosphere?

Molten rock material from the asthenosphere is known as magma. The asthenosphere is a semi-fluid layer of the upper mantle located beneath the lithosphere, where temperatures and pressures are sufficient to partially melt rock. This magma can rise to the surface, leading to volcanic activity, or it can solidify underground, forming intrusive igneous rocks. The composition of this magma varies, influencing the type of volcanic eruptions and the resulting landforms.


One hypothesis states that plate movements results from convection currents in the?

Earth's mantle. These convection currents are driven by heat from the Earth's core, which causes material in the mantle to become less dense and rise, and denser material to sink. This movement of the mantle material pushes and drags the tectonic plates along with it.

Related Questions

Does cooler material in asthenosphere rise toward lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to its higher density, causing it to sink and then rise due to convective forces. This movement of material is one of the driving mechanisms behind plate tectonics.


Does the cooler material in the asthenosphere rise toward the lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to its relatively higher density. As it approaches the lithosphere, this cooler material can create convective currents that contribute to plate tectonics and volcanic activity.


Does cooler material in the asthenosphere rises towards the lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to convection currents. As the cooler material sinks, it displaces warmer material, creating a cycle of movement within the asthenosphere. This movement can contribute to the tectonic plate motion on the Earth's surface.


Is magma in the asthenosphere?

Yes, magma can be found in the asthenosphere. The asthenosphere is a partially molten layer beneath the lithosphere where magma can be generated due to the high temperatures and pressures. This molten material can rise to the surface through volcanic activity.


What process is responsible for transfer of matter and energy in the asthenosphere?

The process responsible for the transfer of matter and energy in the asthenosphere is convection. This is when heat from the core causes the hotter, less dense material in the asthenosphere to rise, while the cooler, denser material sinks back down. This movement of material creates a circular flow of convection currents that transfer energy and move tectonic plates.


What are the main causes of convection in the asthenosphere?

The main causes of convection in the asthenosphere are heat generated from the Earth's core, radioactive decay of elements within the Earth, and the movement of tectonic plates. As the material in the asthenosphere is heated unevenly, it becomes less dense and rises, while cooler, denser material sinks, creating a convection current.


Do cooler material in the asthenosphere rises towards the lithosphere?

Yes, cooler material in the asthenosphere can rise towards the lithosphere due to differences in density. This movement can result in convection currents, where cooler material sinks and hotter material rises, contributing to plate motion and seismic activity.


Does mantle material rise in convection currents because heated materials become more dense?

no


For convection currents in the asthenosphere where does the heat come from?

The heat in the asthenosphere primarily comes from the heat generated by the decay of radioactive isotopes in the mantle and the residual heat from Earth's formation. This heat causes the material in the asthenosphere to become less dense and rise, generating convection currents.


Is it true molten material in the asthenosphere rises in convection currents because heated materials become more dense?

Actually, hot, less dense material rises, and cold, denser material sinks. Denser material will be heavier (per unit volume) and gravity therefore pulls it down. Less dense material has buoyancy and rises. It's very logical.


What is the material in the asthenosphere?

all different things


What is Molten rock material from the asthenosphere?

Molten rock material from the asthenosphere is known as magma. The asthenosphere is a semi-fluid layer of the upper mantle located beneath the lithosphere, where temperatures and pressures are sufficient to partially melt rock. This magma can rise to the surface, leading to volcanic activity, or it can solidify underground, forming intrusive igneous rocks. The composition of this magma varies, influencing the type of volcanic eruptions and the resulting landforms.