answersLogoWhite

0

Photons propagating at frequencies in the visible light spectrum can knock out electrons from atoms, known as the photoelectric effect, if their energy is greater than the photoelectric work function for that atom. However, at the energies associated with the visible light frequencies, these new photoelectrons will absorb any excess energy of the initial photons and convert it to kinetic energy, meaning that the initial photons vanish. Obviously, if the photons are gone, they can't scatter. Increasing the intensity (brightening) of the photons will cause more electrons to be emitted, but it will not increase their energy since photon energy is a function of its frequency, not quantity.

Photons that retain energy after interacting with an electron via the photoelectric effect are said to undergo Compton scattering. Now, despite what everyone says, if a photon has any amount of energy greater than the applicable photoelectric work function, it can theoretically undergo Compton scattering. Yes, I'm implying that visible light can Compton scatter. However, the probability of Compton scattering at these energies is very low, not to mention these scattered photons would most likely loose all of their energy from all of the other various available atomic interactions before they could even escape the sample, which is a necessary component to measurement (something has to exist in order to be measured). Therefore, the effects of Compton scattering are negligible at visible light energies. In fact, they don't really start becoming noticeable until around energies of 100keV, which is around 105 times greater than the energies associated with visible light. These kinds of energies are associated with x-rays.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

Why is compton effect not observable with visible light?

in compton scattering it is necessary that the energy of the photon should be very much greater than binding energy of electron .. binding energy is equal to work function of metal . in most of metals , the threshold frequency is equal to that of ultravoilet light .that is why we do not observe comption effect with visible light.


What might you observe with a radio telescope that you couldn't observe with an optical telescope?

Object that only shine with radio waves and not in the visible spectrum an object hidden by dust that block visible light.


Which of the suns layers produces its visible light?

The visible light emitted by the Sun originates from the photosphere, which is the outermost layer of the Sun's atmosphere. This is the layer that we see when we observe the Sun from Earth.


What were arthur compton's contributions to the atomic theory?

Arthur Compton made significant contributions to the atomic theory by discovering the Compton effect, which provided experimental evidence for the particle nature of light. This discovery helped establish the understanding that light can behave as both a wave and a particle, which was fundamental to the development of quantum mechanics.


What is tandal effect?

The Tyndall effect is the scattering of light by colloidal particles in a transparent medium. This phenomenon causes the particles to become visible as they scatter light, creating a visible beam of light passing through the medium. The Tyndall effect can be observed in systems such as smoke, fog, or colloidal solutions.

Related Questions

Why is compton effect not observable with visible light?

in compton scattering it is necessary that the energy of the photon should be very much greater than binding energy of electron .. binding energy is equal to work function of metal . in most of metals , the threshold frequency is equal to that of ultravoilet light .that is why we do not observe comption effect with visible light.


What are the proofs of the particles nature of light?

photo electric effect,compton's effect


What are the proofs of the particles of nature of light?

photo electric effect,compton's effect


What did Arthur Compton invent?

Arthur Compton discovered the Compton effect, which demonstrates the particle-like behavior of light. This discovery provided evidence for the concept of photons and helped pave the way for the development of quantum mechanics.


Why does ultraviolet light have a big effect on us but visible light doesn't?

it have more energy than visible light


What might you observe with a radio telescope that you couldn't observe with an optical telescope?

Object that only shine with radio waves and not in the visible spectrum an object hidden by dust that block visible light.


How can you prove that light is a particle?

The particle nature of light was demonstrated through experiments like the photoelectric effect and the Compton effect. In the photoelectric effect, light shining on a metal surface causes the ejection of electrons, suggesting that light is made up of photons (particles). In the Compton effect, X-rays scattering off electrons result in a shift in wavelength, supporting the idea that light behaves as particles when interacting with matter.


Why did Arthur Holly Compton win The Nobel Prize in Physics in 1927?

The Nobel Prize in Physics 1927 was divided equally between Arthur Holly Compton for his discovery of the effect named after him and Charles Thomson Rees Wilson for his method of making the paths of electrically charged particles visible by condensation of vapour.


Which of the suns layers produces its visible light?

The visible light emitted by the Sun originates from the photosphere, which is the outermost layer of the Sun's atmosphere. This is the layer that we see when we observe the Sun from Earth.


What has the author Maria Juranyi written?

Maria Juranyi has written: 'Studies of the compton effect from the viewpoint of the ballistic theory of light'


What are the differences between the Compton effect and the photoelectric effect in terms of their interactions with matter?

The Compton effect involves the scattering of X-rays by electrons, resulting in a change in wavelength and energy of the X-rays. The photoelectric effect, on the other hand, involves the ejection of electrons from a material when it is exposed to light, without any change in wavelength. In terms of interactions with matter, the Compton effect involves interactions with free electrons, while the photoelectric effect involves interactions with bound electrons in atoms.


What were arthur compton's contributions to the atomic theory?

Arthur Compton made significant contributions to the atomic theory by discovering the Compton effect, which provided experimental evidence for the particle nature of light. This discovery helped establish the understanding that light can behave as both a wave and a particle, which was fundamental to the development of quantum mechanics.