Benzene has a stable structure. Aspirin has an carboxylic group with delocalized electrons. So aspirin is more reactive than benzene.
Alkyl benzene can be more easily oxidized than benzene due to the presence of the alkyl group, which is more reactive than the aromatic ring. The alkyl substituent can donate electrons, enhancing the electrophilic character of the benzene ring and making it more susceptible to oxidation reactions. Additionally, the oxidation of the alkyl group can lead to the formation of more reactive species, further facilitating the overall oxidation process. In contrast, benzene's stable aromatic structure resists oxidation.
Benzene is generally more reactive than ethane due to its unique structure and the presence of a conjugated π-electron system. While ethane is a saturated hydrocarbon that primarily undergoes reactions such as combustion and substitution, benzene can participate in electrophilic aromatic substitution reactions due to its delocalized electrons. This makes benzene more susceptible to reactions with electrophiles. However, benzene's stability also means it is less reactive in some conditions compared to alkenes or alkynes.
The benzene ring is less reactive than pyrrole because it is very stable due to its aromaticity. The delocalization of pi electrons in the benzene ring creates a high resonance energy, making it less inclined to undergo reactions. In contrast, pyrrole is more reactive because it is not fully aromatic and has more reactive sites available for bonding.
No chromium is more reactive than chromium because it it located farther right on the periodic table than nickel. No chromium is more reactive than nickel because it it located farther right on the periodic table than nickel. No chromium is more reactive than nickel because it it located farther right on the periodic table than nickel. No chromium is more reactive than nickel because it it located farther right on the periodic table than nickel.
Sodium is more reactive than lithium and magnesium but less reactive than potassium.
Phenol and benzene are both aromatic compounds, but phenol has a hydroxyl group (-OH) attached to the benzene ring, making it more reactive than benzene. Phenol can undergo reactions such as oxidation and substitution more readily than benzene. Additionally, phenol is more acidic than benzene due to the presence of the hydroxyl group.
Nitration of nitrobenzene is more difficult because the nitro group is an electron-withdrawing group, making the nitrobenzene less reactive towards electrophilic aromatic substitution reactions. In contrast, benzene is more reactive because it does not have any electron-withdrawing groups attached to it.
Benzene is generally more reactive than ethane due to its unique structure and the presence of a conjugated π-electron system. While ethane is a saturated hydrocarbon that primarily undergoes reactions such as combustion and substitution, benzene can participate in electrophilic aromatic substitution reactions due to its delocalized electrons. This makes benzene more susceptible to reactions with electrophiles. However, benzene's stability also means it is less reactive in some conditions compared to alkenes or alkynes.
pyridine is less reactive than benzene because when we form its conjugate base then it'll b more stable than dat of benzene.. so more stabler means less reactive.......and also due to more resonance in benzene it will b more reactive...same 4 furan and pyrrole
The benzene ring is less reactive than pyrrole because it is very stable due to its aromaticity. The delocalization of pi electrons in the benzene ring creates a high resonance energy, making it less inclined to undergo reactions. In contrast, pyrrole is more reactive because it is not fully aromatic and has more reactive sites available for bonding.
It's because of resonance, which is the delocalization of electrons (the pi electrons). This delocalization lowers the potential energy of the benzene and thus renders in more stable.
No, Haloarenes are less reactive than benzene towards electrophillic substitution reaction. This is because the halogen atom attached to benzene ring in haloarenesis slightly deactivating and orthoand para directing. so attack can only take place at orthoand para. Also the halogen atom in Haloarenesdue to its -I effect has some tendancyto withdraw electrons from the benzene ring and hence making it deactivating.Since the ring gets deactivated as compared to benzene, haloarenesare less reactive than benzene in electrophillicsubstituionreaction.
Benzene is less reactive than alkenes because it has a stable aromatic ring structure, which leads to a high degree of resonance stabilization. This stability reduces the tendency of benzene to undergo addition reactions that are commonly seen with alkenes. Additionally, the delocalization of electrons in the benzene ring provides extra stability, making it less likely to undergo reactions that would disrupt this resonance.
Haloarenes are less reactive towards electrophiles than benzene because the halogen substituents on the aromatic ring act as electron-withdrawing groups, reducing the electron density on the ring and making it less susceptible to attack by electrophiles. This results in a decreased reactivity towards electrophilic substitution reactions compared to benzene.
An alkene is more reactive than alkyne. as double bond can donate pair of electron. while in tripple bond the bond length is less than double bond. Alkkynes have more attractive forces than alkene. so alkene is more reactive.
Adding halogens to alkene groups (X2) requires that the product adopt an anti configuration. Hexene will also lose its double bond upon bromination. Benzene is energetically unfavorable when a reaction attempts to break its double bond. The resonance benzene has makes it very stable, and thus very hard to break.
sodium is more reactive than magnesium!