Because the forces at work are extremely large. That's a very unsatisfying answer, I know, so I recommend you read more about the strong nuclear force.
Nuclear technologies produce enormous amounts of energy through a process called nuclear fission, where the nucleus of an atom is split to release large amounts of heat. This heat is then used to generate steam, which drives turbines connected to generators that produce electricity. The energy released in nuclear reactions is much greater than in chemical reactions, leading to the large amounts of energy produced by nuclear power plants.
The amount of energy released from a fission reaction is much greater than that from a chemical reaction because fission involves the splitting of atomic nuclei, leading to a significant release of nuclear binding energy. This energy release is millions of times greater than the energy released in chemical reactions, which involve breaking and forming chemical bonds.
In terms of energy per atom, nuclear fusion produces more energy than nuclear fission. Fusion reactions involve the combination of lighter atomic nuclei to form heavier nuclei, releasing large amounts of energy in the process. Fission reactions, on the other hand, involve the splitting of heavier atomic nuclei into smaller fragments, releasing energy.
Nuclear fission is the process of splitting a nucleus with a large mass into two nuclei with smaller masses. The energy released can then be used to produce electricity. Nuclear fusion is the process of merging nuclei with smaller masses into a nucleus with a larger mass. The energy released by this reaction may someday be used to produce electricity. In other words, Nuclear Fusion is the exact opposite of Nuclear fission. While Nuclear Fission is splitting a nucleus into two nuclei, nuclear fusion is merging two nuclei into a nucleus.
Well... It depends on what you mean by "a lot". The binding energy released from a fusion event is actually only about four times that of a fission event, however, the density of the much lighter elements involved in fusion (hydrogen) versus fission (uranium) results in a much more effective total mass to energy ratio, much more than a hundred times that of fission.I'm not talking about delta-mass to energy - that is constant per e = mc2 - I'm talking about the total fuel mass versus the amount of energy available in the reaction.
Nuclear Fission Energy is energy that is produced using fissionable elements. The most common is Uranium. Fission energy involves the fission heating water and turning a turbine, much like coal.
Nuclear fission. Larger atoms are broken into smaller parts and energy is released. Nuclear fusion is where lighter atoms are fused together - as happens in the sun. This also produce energy, though much more.
The moderator in a nuclear reactor slows (moderates) the neutrons that are released during fission, so that they can subsequently cause fission in other atoms. When the neutrons are initially released, they tend to have too much energy, which impacts their ability to cause subsequent fission.
The energy stored in the nucleus is nuclear energy, which is released during nuclear reactions such as fission or fusion. This energy is much more potent than chemical energy due to the large amount of energy stored in the nucleus of an atom.
Nuclear technologies produce enormous amounts of energy through a process called nuclear fission, where the nucleus of an atom is split to release large amounts of heat. This heat is then used to generate steam, which drives turbines connected to generators that produce electricity. The energy released in nuclear reactions is much greater than in chemical reactions, leading to the large amounts of energy produced by nuclear power plants.
The amount of energy released from a fission reaction is much greater than that from a chemical reaction because fission involves the splitting of atomic nuclei, leading to a significant release of nuclear binding energy. This energy release is millions of times greater than the energy released in chemical reactions, which involve breaking and forming chemical bonds.
In terms of energy per atom, nuclear fusion produces more energy than nuclear fission. Fusion reactions involve the combination of lighter atomic nuclei to form heavier nuclei, releasing large amounts of energy in the process. Fission reactions, on the other hand, involve the splitting of heavier atomic nuclei into smaller fragments, releasing energy.
Nuclear fission is the process of splitting a nucleus with a large mass into two nuclei with smaller masses. The energy released can then be used to produce electricity. Nuclear fusion is the process of merging nuclei with smaller masses into a nucleus with a larger mass. The energy released by this reaction may someday be used to produce electricity. In other words, Nuclear Fusion is the exact opposite of Nuclear fission. While Nuclear Fission is splitting a nucleus into two nuclei, nuclear fusion is merging two nuclei into a nucleus.
Nuclear Fusion, not to be mistaken with Nuclear Fission, is a process in which energy is created due to the merging or "fusion" of subatomic particles. The process is much more energy efficient, and produces larger quantities of energy than in a fission based process.
One use is in nuclear power plants to produce steam and turn turbines to generate electricity.Nuclear bombs ^.^
Chemical energy can be converted into nuclear energy through processes like nuclear fission or fusion. In nuclear fission, the nucleus of an atom is split into smaller parts, releasing a significant amount of energy. In nuclear fusion, nuclei are combined to form heavier nuclei, also releasing energy. These processes release a much larger amount of energy compared to chemical reactions.
Nuclear power plants utilize a process called nuclear fission, where a small amount of uranium fuel generates a large amount of energy. This is because the energy released during fission is several million times greater than the energy released in chemical reactions, such as burning fossil fuels. As a result, nuclear power plants require relatively small quantities of fuel to produce large amounts of electricity.