answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What about a cell's resting membrane potential is FALSE?

A false statement about a cell's resting membrane potential could be that it does not involve the movement of ions across the cell membrane. In reality, the resting membrane potential is primarily due to the unequal distribution of ions, such as sodium and potassium, across the membrane, maintained by ion channels and pumps.


Term that refers to a membrane potential of about -70 mv?

Resting membrane potential is typically around -70mV and is maintained by the activity of ion channels that allow for the passive movement of ions across the cell membrane.


What is the stimulus that changes the resting membrane?

The stimuli that can change the resting membrane potential of a cell include changes in ion concentrations inside or outside the cell, neurotransmitter binding to receptors, and mechanical deformation of the cell membrane. These changes can lead to the opening or closing of ion channels, altering the flow of ions across the membrane and affecting the cell's resting membrane potential.


What is the charge on the inside membrane during the resting membrane potential?

The inside membrane is negatively charged during the resting membrane potential, typically around -70mV. This is due to the uneven distribution of ions across the cell membrane, with more negatively charged ions inside the cell compared to outside.


What is the inside charge of a nerve at its resting potentail?

The inside of a nerve cell is negatively charged at its resting potential, typically around -70 millivolts. This resting membrane potential is maintained by the differential distribution of ions across the cell membrane, with more sodium and calcium ions outside the cell and more potassium ions inside.

Related Questions

What is the relationship between membrane potential and resting potential in a cell?

The resting potential of a cell is the membrane potential when the cell is at rest, typically around -70 millivolts. Membrane potential refers to the difference in electrical charge across the cell membrane. Resting potential is a type of membrane potential that is maintained when the cell is not actively sending signals.


What about a cell's resting membrane potential is FALSE?

A false statement about a cell's resting membrane potential could be that it does not involve the movement of ions across the cell membrane. In reality, the resting membrane potential is primarily due to the unequal distribution of ions, such as sodium and potassium, across the membrane, maintained by ion channels and pumps.


What is the difference in electrical charge across the cell membrane of a resting neuron is called?

This is the definition of "resting potential".


What is the electrical potential across the cell membrane of a nerve cell or muscle cell when the cell is not active?

The resting membrane potential of a nerve cell or muscle cell is typically around -70 millivolts. This electrical potential is maintained by the unequal distribution of ions across the cell membrane, with more negative ions inside the cell than outside. This resting potential is essential for the cell to respond to changes in its environment and generate electrical signals when needed.


Why is the inside of the cell membrane negatively charged at resting potential?

The inside of the cell membrane is negatively charged at resting potential because of an unequal distribution of ions, specifically more negatively charged ions inside the cell compared to outside. This creates an electrical potential difference across the membrane, known as the resting membrane potential.


What is the significance of the equilibrium potential in determining the resting membrane potential of a cell at cl equilibrium?

The equilibrium potential is important in determining the resting membrane potential of a cell because it represents the voltage at which there is no net movement of ions across the cell membrane. At this point, the concentration gradient and electrical gradient for a specific ion are balanced, resulting in a stable resting membrane potential.


Term that refers to a membrane potential of about -70 mv?

Resting membrane potential is typically around -70mV and is maintained by the activity of ion channels that allow for the passive movement of ions across the cell membrane.


What is the stimulus that changes the resting membrane?

The stimuli that can change the resting membrane potential of a cell include changes in ion concentrations inside or outside the cell, neurotransmitter binding to receptors, and mechanical deformation of the cell membrane. These changes can lead to the opening or closing of ion channels, altering the flow of ions across the membrane and affecting the cell's resting membrane potential.


What is the charge on the inside membrane during the resting membrane potential?

The inside membrane is negatively charged during the resting membrane potential, typically around -70mV. This is due to the uneven distribution of ions across the cell membrane, with more negatively charged ions inside the cell compared to outside.


What is the inside charge of a nerve at its resting potentail?

The inside of a nerve cell is negatively charged at its resting potential, typically around -70 millivolts. This resting membrane potential is maintained by the differential distribution of ions across the cell membrane, with more sodium and calcium ions outside the cell and more potassium ions inside.


Why is the resting membrane potential negatively charged?

The resting membrane potential is negatively charged because of the unequal distribution of ions across the cell membrane, with more negative ions inside the cell than outside. This creates an electrical gradient that results in a negative charge inside the cell at rest.


What system keeps the neuron at resting potential?

The sodium-potassium pump is responsible for maintaining the resting membrane potential of a neuron by actively pumping sodium ions out of the cell and potassium ions into the cell, against their concentration gradients. This creates an imbalance of ions across the membrane, contributing to the resting potential of the neuron.