answersLogoWhite

0

This is done in order to get unbalanced force act on the pendulum. A torque will act due to gravitation of the earth and the tension in the string as they then act at different points and opposite direction on the pendulum. Have the forces act at the same point, the formation of torque would have been ruled out and the pendulum would not swing.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

How does the period of a pendulum difference theoretically with angular displacement and mass of ball for simple pendulum?

According to the mathematics and physics of the simple pendulum hung on a massless string, neither the mass of the bob nor the angular displacement at the limits of its swing has any influence on the pendulum's period.


What happen to simple pendulum at lowest point of its swing?

At the lowest point of its swing, a simple pendulum's velocity is at its maximum, and its potential energy is at its minimum. The kinetic energy is at its highest since the pendulum has the highest speed.


What happens to the acceleration of a simple pendulum as it approaches the lowest point of its swing?

The velocity reaches a maximum, and the pendulum will begin to decelerate. Because the acceleration is the derivative of the velocity, and the derivative at the location of an extrema is zero, the acceleration goes to zero.


More differences between simple harmonic motion and periodic motion with practical examples?

Simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement from equilibrium. Practical examples include a swinging pendulum or a mass-spring system. Periodic motion, on the other hand, refers to any repeated motion that follows the same path at regular intervals, such as the motion of a wheel rotating. So, while all simple harmonic motion is periodic, not all periodic motion is necessarily simple harmonic.


Can the average velocity of a particle be zero but not its average speed?

Yes, since velocity is speed and direction its average can be zero. For example say a plane flies from point A to point B at 300 mph and turns around to go from B to A at 300 mph; its average velocity is 0 since it is in the same spot as it started ( the velocity vectors cancel) but its average speed is 300 mph.

Related Questions

What are the factor affecting on the simple pendulum?

The factors affecting a simple pendulum include the length of the string, the mass of the bob, the angle of displacement from the vertical, and the acceleration due to gravity. These factors influence the period of oscillation and the frequency of the pendulum's motion.


When will the motion of simple pendulum be shm?

The motion of the simple pendulum will be in simple harmonic if it is in oscillation.


Why time periods is equal of pendulum?

A simple pendulum, ideally consists of a large mass suspended from a fixed point by an inelastic light string. These ensure that the length of the pendulum from the point of suspension to its centre of mass is constant. If the pendulum is given a small initial displacement, it undergoes simple harmonic motion (SHM). Such motion is periodic, that is, the time period for oscillations are the same.


How do you illustrate graph of a simple pendulum?

To illustrate the graph of a simple pendulum, you can plot the displacement (angle) of the pendulum on the x-axis and the corresponding period of oscillation on the y-axis. As the pendulum swings back and forth, you can record the angle and time taken for each oscillation to create the graph. The resulting graph will show the relationship between displacement and period for the simple pendulum.


Do simple pendulum vibrates in vacuum?

Yes, a simple pendulum can still vibrate in a vacuum because its motion depends on the force of gravity and its initial displacement. The absence of air resistance in a vacuum does not affect the pendulum's ability to swing back and forth.


What are the physical parameters in the investigation of a simple pendulum?

The physical parameters of a simple pendulum include (1) the length of the pendulum, (2) the mass of the pendulum bob, (3) the angular displacement through which the pendulum swings, and (4) the period of the pendulum (the time it takes for the pendulum to swing through one complete oscillation).


How does the period of a pendulum difference theoretically with angular displacement and mass of ball for simple pendulum?

According to the mathematics and physics of the simple pendulum hung on a massless string, neither the mass of the bob nor the angular displacement at the limits of its swing has any influence on the pendulum's period.


How do you measure amplitude in a simple pendulum?

Amplitude in a simple pendulum is measured as the maximum angular displacement from the vertical position. It can be measured using a protractor or by observing the maximum angle the pendulum makes with the vertical when in motion.


What are conditions used while calculating time period of simple pendulum?

The time period of a simple pendulum is calculated using the following conditions: Length of the pendulum: The longer the length of the pendulum, the longer it takes for one complete back-and-forth swing. Acceleration due to gravity: The time period is inversely proportional to the square root of the acceleration due to gravity. Higher gravity results in a shorter time period. Angle of displacement: The time period is slightly affected by the initial angle of displacement, but this effect becomes negligible for small angles.


Can an ideal simple pendulum realize?

no we cannot realize an ideal simple pendulum because for this the string should be weightless and inextendible.


What type of motion does a pendulum have?

A pendulum exhibits simple harmonic motion, which is a type of periodic motion where the restoring force is directly proportional to the displacement from equilibrium. This causes the pendulum to oscillate back and forth in a regular pattern.


What are the factors on which the time period of simple pendulum depends?

The time period of a simple pendulum depends on the length of the string and the acceleration due to gravity. It is independent of the mass of the bob and the angle of displacement, provided the angle is small.