The reaction would shift to balance the change
The reaction would shift to balance the change
If the added substance is a reactant, the equilibrium shifts toward products. If it is a product, it moves towards reactants.
If heat is added to a system at equilibrium, the position of the equilibrium will shift according to Le Chatelier's principle. For an exothermic reaction, adding heat will shift the equilibrium to the left, favoring the reactants, while for an endothermic reaction, it will shift to the right, favoring the products. This adjustment occurs as the system seeks to counteract the change in temperature.
If the temperature of a system at equilibrium is increased, the equilibrium position will shift in the direction that absorbs heat, according to Le Chatelier's principle. For an exothermic reaction, this means the equilibrium will shift to favor the reactants, while for an endothermic reaction, it will shift to favor the products. This shift helps counteract the increase in temperature by consuming the excess heat.
The reaction quotient indicates the relative amounts of products and reactants present in a system at a given time compared to what would be present at equilibrium. It helps determine the direction a reaction will shift to reach equilibrium.
The reaction would shift to balance the change
The reaction would shift to balance the change
The reaction would shift to balance the change
The reaction would shift to balance the change
The reaction would shift to balance the change
The concentration of products would increase. apex
The base dissociation constant (Kb) for a weak base is the equilibrium constant for the reaction of the base with water to produce hydroxide ions. In this case, the expression for Kb would be [OH-][BH]/[B].
If a weak acid dissociation were upset, the equilibrium would shift to try to restore the balance of reactants and products. This could result in changes to the pH of the solution and the concentration of the acid and its conjugate base. Ultimately, the system would try to reach a new equilibrium point.
If more product is added to a weak base dissociation equilibrium, Le Chatelier's principle predicts that the equilibrium will shift to the left towards reactants to relieve the stress caused by the increase in product concentration. This will result in more reactant molecules being formed.
Concentration of products would increase in order to attain equilibrium in the system again.For example:H2CO3 --> H+ + HCO3-K= ([H+][žHCO3-])/([H2CO3])K is constant for this process, so if you increase the concentration of reactants (H2CO3), in order for K to stay the same, concentration of products (H+, HCO3-) would also have to increase.It's part of Le Chatelier's principle: "If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or partial pressure, then the equilibrium shifts to counteract the imposed change and a new equilibrium is established."So, in your case, adding more reactant would cause equilibrium to shift to the right (toward products), and therefore, their concentration would increase so that new equilibrium could be established.
If the added substance is a reactant, the equilibrium shifts toward products. If it is a product, it moves towards reactants.
If the added substance is a reactant, the equilibrium shifts toward products. If it is a product, it moves towards reactants.