Well this entirely depends on the "type" of glass you are talking about and whether its a sample or an artefact/material. as Youngs modulus = stress / stran..... where the ratio is constant. stress being sigma and strain being epsilon. If its just glass as in general (material) then its around 65 - 90 GPA . not MPA as GPA is for stiff materials. the justinator
Youngs Modulus
75gpa
there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
Metal is not a specific material, how is this ever going to be answered?!
Depends on the hardness of the formulation. Poisson's ratio depends mainly on the bulk modulus and slightly on the Youngs modulus at very low strains for the subject compound. If the Youngs modulus lies between 0.92 and 9.40MN/m², Poisson's ratio lies between 0.49930 and 0.49993.
Young's modulus
Youngs Modulus
75gpa
I think you mean "What variables affect young's modulus". Obviously not an english major!
young modulus remain unaffected ...as it depends on change in length ..
Young's modulus-205 kN/mm2 Poisson's ratio = 0.30
there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
Metal is not a specific material, how is this ever going to be answered?!
Depends on the hardness of the formulation. Poisson's ratio depends mainly on the bulk modulus and slightly on the Youngs modulus at very low strains for the subject compound. If the Youngs modulus lies between 0.92 and 9.40MN/m², Poisson's ratio lies between 0.49930 and 0.49993.
G = E/2(1+u) where G = mod of rigidity and u =poisson ration and E = young modulus
The Young's modulus of Teflon (PTFE) is around 500-650 MPa, indicating its stiffness and resistance to deformation under stress.
This is known as the Modulus of Elastisity, or Youngs Modulus (in tension/compression) and will be a constant as long as the deformation is in the elastic range.